码迷,mamicode.com
首页 > 编程语言 > 详细

Python 图片相似度

时间:2020-02-13 13:01:37      阅读:84      评论:0      收藏:0      [点我收藏+]

标签:平均值   实现   感知哈希   返回   tps   numpy   相等   再计算   直方图   

 原文:https://www.cnblogs.com/dcb3688/p/4610660.html

 

 

import cv2
import numpy as np



#原文:https://www.cnblogs.com/dcb3688/p/4610660.html


# 均值哈希算法
def aHash(img):
    # 缩放为8*8
    img = cv2.resize(img, (8, 8))
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为‘‘
    s = 0
    hash_str = ‘‘
    # 遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s = s + gray[i, j]
    # 求平均灰度
    avg = s / 64
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if gray[i, j] > avg:
                hash_str = hash_str + 1
            else:
                hash_str = hash_str + 0
    return hash_str


# 差值感知算法
def dHash(img):
    # 缩放8*8
    img = cv2.resize(img, (9, 8))
    # 转换灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hash_str = ‘‘
    # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if gray[i, j] > gray[i, j + 1]:
                hash_str = hash_str + 1
            else:
                hash_str = hash_str + 0
    return hash_str


# 感知哈希算法(pHash)
def pHash(img):
    # 缩放32*32
    img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC

    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 将灰度图转为浮点型,再进行dct变换
    dct = cv2.dct(np.float32(gray))
    # opencv实现的掩码操作
    dct_roi = dct[0:8, 0:8]

    hash = []
    avreage = np.mean(dct_roi)
    for i in range(dct_roi.shape[0]):
        for j in range(dct_roi.shape[1]):
            if dct_roi[i, j] > avreage:
                hash.append(1)
            else:
                hash.append(0)
    return hash


# 通过得到RGB每个通道的直方图来计算相似度
def classify_hist_with_split(image1, image2, size=(256, 256)):
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data


# 计算单通道的直方图的相似值
def calculate(image1, image2):
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree


# Hash值对比
def cmpHash(hash1, hash2):
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1)!=len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 不相等则n计数+1,n最终为相似度
        if hash1[i] != hash2[i]:
            n = n + 1
    return n


#img1 = cv2.imread(‘openpic/x1y2.png‘)  #  11--- 16 ----13 ---- 0.43
#img2 = cv2.imread(‘openpic/x2y4.png‘)

#img1 = cv2.imread(‘openpic/x3y5.png‘)  #  10----11 ----8------0.25
#img2 = cv2.imread(‘openpic/x9y1.png‘)

img1 = cv2.imread(openpic/x1y2.png)  #  6------5 ----2--------0.84
img2 = cv2.imread(openpic/x2y6.png)

#img1 = cv2.imread(‘openpic/t1.png‘)  #    14------19---10--------0.70
#img2 = cv2.imread(‘openpic/t2.png‘)

#img1 = cv2.imread(‘openpic/t1.png‘)  #    39------33---18--------0.58
#img2 = cv2.imread(‘openpic/t3.png‘)

hash1 = aHash(img1)
hash2 = aHash(img2)
n = cmpHash(hash1, hash2)
print(均值哈希算法相似度:, n)

hash1 = dHash(img1)
hash2 = dHash(img2)
n = cmpHash(hash1, hash2)
print(差值哈希算法相似度:, n)

hash1 = pHash(img1)
hash2 = pHash(img2)
n = cmpHash(hash1, hash2)
print(感知哈希算法相似度:, n)

n = classify_hist_with_split(img1, img2)
print(三直方图算法相似度:, n)

 

Python 图片相似度

标签:平均值   实现   感知哈希   返回   tps   numpy   相等   再计算   直方图   

原文地址:https://www.cnblogs.com/guxingy/p/12302950.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!