码迷,mamicode.com
首页 > 系统相关 > 详细

【Course】Machine learning:Week 2-Lecture1-Gradient Descent For Multiple Variables

时间:2020-02-20 22:12:11      阅读:76      评论:0      收藏:0      [点我收藏+]

标签:算法   math   梯度   span   ext   variables   image   图片   machine   

Gradient Descent For Multiple Variables

问题提出:Week2的梯度下降问题由单一变量转变成了多变量:

技术图片

相应的公式如下:

技术图片

梯度下降算法

\[ \begin{array}{l}{\text { repeat until convergence: }\{} \\ {\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h \theta\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{j}^{(i)} \quad \text { for } j:=0 \ldots n} \\ {\}}\end{array} \]
也就是:
\[ \begin{array}{l}{\text { repeat until convergence: }\{} \\ {\theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{0}^{(i)}} \\ {\theta_{1}:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{1}^{(i)}} \\ {\theta_{2}:=\theta_{2}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{2}^{(i)}} \\ {\cdots} \\ {\}^{\cdots}}\end{array} \]
\(\theta_{0}\)\(\theta_{1}\)\(\theta_{2}\)...这些参数要同时更新

【Course】Machine learning:Week 2-Lecture1-Gradient Descent For Multiple Variables

标签:算法   math   梯度   span   ext   variables   image   图片   machine   

原文地址:https://www.cnblogs.com/Ireland/p/12337580.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!