码迷,mamicode.com
首页 > 编程语言 > 详细

Python - 几种排序算法的实现

时间:2020-02-23 16:32:03      阅读:94      评论:0      收藏:0      [点我收藏+]

标签:分组   数据   def   二叉树   说明   开始   hellip   高度   排序算法   

直接插入、选择排序、冒泡排序、快速排序、……归并排序、基数排序、希尔、堆排序、

直接插入:

思想是:1、将数据序列分成两部分,前一部分是有序的,后面一部分是无序的.

2、将无序变有序,首先从第一开始,然后第一,第二比较后排序,此时这两位就是有序的了;然后从无序的队列中取出第三位和第二位比较,然后他们中矮的再和第一位比较,此时三位是有序的;

然后再取出第四位,和前面的比较……,一直到最后一位比较。

def insert_sort(aList):
    n = len(aList)
    for i in range(n):
        j = i
        while j > 0:
            if aList[j] < aList[j - 1]:
                aList[j], aList[j -1] = aList[j - 1], aList[j]
            j -= 1

if __name__ == "__main__":
    li = [54, 26, 93, 17, 77, 31, 44, 55, 20]
    insert_sort(li)
    print(li)

选择排序:

思路是:1、首先再未排序中找出最大(小)元素,存放到排序序列的起始位置;

2、再从剩余排序序列中寻找最大(小)元素,然后放到已排序序列的末尾,以此类推,知道所有元素均排序完毕;

def select_sort(aList):
    l = len(aList)
    for j in range(l):
        min_index = j
        for i in range(min_index + 1,l):
            if aList[min_index] > aList[i]:
                min_index = i  # 循环一遍后找到最小的索引
        aList[j], aList[min_index] = aList[min_index], aList[j]

if __name__ =="__main__":
    li = [5, 16, 23, 19, 15, 35]
    select_sort(li)
    print(li)

冒泡排序:

思路是:1、将序列当中的左右元素依次比较,保证右边的元素始终大于左边的元素;(第一轮结束后,序列最后一个元素一定是当前序列的最大值;)

2、对序列当中剩下的n-1个元素依次遍历,(利用while循环可以减少执行次数);

def bubble_sort(aList):
    n = len(aList)
    for i in range(n - 1):
        for j in range(n - i - 1):
            if aList[j] > aList[j + 1]:

                aList[j], aList[j + 1] = aList[j + 1], aList[j]


if __name__ == __main__:
    li = [10, 22, 33, 41, 54, 55, 14]
    bubble_sort(li)
    print(li)

最优时间复杂度:O(n)(表示遍历一次发现没有任何可以交换的元素,排序结束。)

最坏时间复杂度:O(n^2)

快速排序

思路是:1、从列表中找出一个元素,mid_val 作为“基准”元素.

2、然后对列表进行排序,排序的规则是,比min_val基准元素小的放在基准元素左边,比min_val基准元素大的放在基准元素的右边。这个时候基准元素就在这个列表的中间位置。这个称为分区操作。

3、递归进行操作,就是在把基准元素左边的元素当作一个列表重复步骤2的操作,把基准元素右边的元素当作一个列表重复第2步操作;

快速排序实现①

def quick_sort(arr):
    if len(arr)<=1:
        return arr

    pivot = arr[len(arr)//2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)


if __name__ == "__main__":
    li = [10, 22, 33, 41, 54, 55, 14, 57]
    print(quick_sort(li))

快速排序实现②

def quicksort(nums):
    if len(nums) <= 1:
        return nums

    left =[]
    right = []
    base = nums.pop()

    for x in nums:
        if x < base:
            left.append(x)
        else:
            right.append(x)

    return quicksort(left) + [base] + quicksort(right)

if __name__ == __main__:
    nums = [21, 63, 23, 73, 2, 4, 58, 39, 29, 18]
    print(quicksort(nums))

堆排序:

基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点.将其与末尾元素进行交换,此时末尾就为最大值.然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值.如此反复执行,便能的带一个有序序列.

时间复杂度:

       堆排序的时间复杂度分为两个部分一个是建堆的时候所耗费的时间,一个是进行堆调整的时候所耗费的时间.建堆是一个线性过程,相当于o(h1)+o(h2)+…+o(hlen/2)这里h表示节点深度,len/2表示节点最大深度,对于求和过程,结果都是线性O(n).堆调整为一个递归的过程,调整堆的过程时间复杂度与堆的深度有关系,相当于lgn的操作.

       因为建堆的时间复杂度是O(n),调整堆的时间复杂度是O(lgn),所以堆排序的时间复杂度是O(nlgn).

def heap_adjust(array, start, end):
    temp = array[start]
    child = 2 * start
    while child <= end:
        if child < end and array[child] < array[child + 1]:
            child += 1
        if temp >= array[child]:
            break
        array[start] = array[child]
        start = child
        child *= 2
    array[start] = temp


def heap_sort(array):
    # 从最后一个有孩子节点的节点开始调整最大堆
    first = len(array) // 2 - 1
    for start in range(first, -1, -1):
        heap_adjust(array, start, len(array) - 1)

    # 将最大的堆放在堆的最后一个位置,并继续调整排序
    for end in range(len(array) - 1, 0, -1):
        array[0], array[end] = array[end], array[0]
        heap_adjust(array, 0, end - 1)


if __name__ == "__main__":
    array = [1, 4, 5, 0, 2, 7, 9, 10, 3, 6]
    heap_sort(array)
    print(array)
    
[0, 1, 2, 3, 4, 5, 6, 7, 9, 10]

归并排序:

把序列拆分再合并起来,使用分治法来实现,这就意味要构造递归算法分治法典型的应用)

时间复杂度

 技术图片

这个图明显是二叉树的形式,所以若集合有n个元素,那高度就为log(n),但其实在每一层做比较的时候,都是一个一个的向序列中放小的元素,每一层都要放n次,所以时间复杂度是nlog(n).

def merge(s1, s2, s):
    """将两个列表s1,s2按顺序融合为一个列表s,s为原列表"""
    # j和i就相当于两个指向的位置,i指s1,j指s2
    i = j = 0
    while i+j<len(s):
        # j==len(s2)时说明s2走完了,或者s1没走完并且s1中该位置是最小的
        if j==len(s2) or (i<len(s1) and s1[i]<s2[j]):
            s[i+j] = s1[i]
            i += 1
        else:
            s[i+j] = s2[j]
            j += 1

def merge_sort(s):
    """归并排序"""
    n = len(s)
    # 剩一个或没有直接返回,不用排序
    if n < 2:
        return
    # 拆分
    mid = n // 2
    s1 = s[0:mid]
    s2 = s[mid:n]
    # 子序列递归调用排序
    merge_sort(s1)
    merge_sort(s2)
    # 合并
    merge(s1, s2, s)

if __name__== "__main__":
    s = [1, 4, 56, 34, 12, 34, 59]
    merge_sort(s)
    print(s)

[1, 4, 12, 34, 34, 56, 59]

基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序

希尔排序:按照步长gap进行分组,然后将每组的元素利用直接插入排序的方法进行排序;每次将gap折半减小,循环上述操作;当gap=1时,利用直接插入,完成排序.

 

Python - 几种排序算法的实现

标签:分组   数据   def   二叉树   说明   开始   hellip   高度   排序算法   

原文地址:https://www.cnblogs.com/qingaoaoo/p/12350046.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!