标签:end other aaaaa ffd 代码 位置 http expr 形式
经典重温,冲冲冲。
/*
* bitXor - x^y using only ~ and &
* Example: bitXor(4, 5) = 1
* Legal ops: ~ &
* Max ops: 14
* Rating: 1
*/
int bitXor(int x, int y)
{
return ~(~(~x & y) & ~(~y & x));
}
解题思路:布尔代数。对于异或,从定义式出发,并使用「德摩根定律」变换:
\[
\begin{align}
A \oplus B &= \overline{A}B + \overline{B}A \&=\overline{(\overline{\overline{A}B}) \cdot (\overline{\overline{A}B})}
\end{align}
\]
/*
* tmin - return minimum two's complement integer
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 4
* Rating: 1
*/
int tmin(void)
{
return 1 << 31;
}
解题思路:Nothing special .
/*
* isTmax - returns 1 if x is the maximum, two's complement number,
* and 0 otherwise
* Legal ops: ! ~ & ^ | +
* Max ops: 10
* Rating: 1
*/
int isTmax(int x)
{
return (!!(x + 1)) & (!(((x + 1) ^ x) + 1));
}
解题思路:isTmax(x) = 1 iff x == 0x7fffffff
。那么 x+1 = 0x80000000
,显然 x ^ (x+1) == (int)(-1)
。ti需要考虑的特殊情况是 x = -1
,因此加入 !!(x + 1)
的情况。
/*
* allOddBits - return 1 if all odd-numbered bits in word set to 1
* where bits are numbered from 0 (least significant) to 31 (most significant)
* Examples allOddBits(0xFFFFFFFD) = 0, allOddBits(0xAAAAAAAA) = 1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 12
* Rating: 2
*/
int allOddBits(int x)
{
int mask = (0xAA << 8) | 0xAA;
mask = (mask << 16) | mask;
return !((x & mask) ^ mask);
}
解题思路:偶数位上的 1
对本题毫无用处,因此构造掩码 mask = 0xAAAAAAAA
将偶数位全部清零,也就是 y = x & mask
。题目要求奇数位上必须全为 1
,就说明 y == 0xAAAAAAAA == mask
,因此 (y ^ mask) == 0x0
。
/*
* negate - return -x
* Example: negate(1) = -1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 5
* Rating: 2
*/
int negate(int x)
{
return (~x) + 1;
}
解题思路:补码的性质,相反数是「按位取反再加一」。
/*
* isAsciiDigit - return 1 if 0x30 <= x <= 0x39 (ASCII codes for characters '0' to '9')
* Example: isAsciiDigit(0x35) = 1.
* isAsciiDigit(0x3a) = 0.
* isAsciiDigit(0x05) = 0.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 15
* Rating: 3
*/
int isAsciiDigit(int x)
{
return ((((x + (~0x30) + 1) >> 31) & 1) ^ 1) & ((((0x39 + (~x) + 1) >> 31) & 1) ^ 1);
}
解题思路:思路很明显,就是需要判断 0x30 <= x && x <= 0x30
。下面来看如何判断 a <= b
。
a <= b
-> b - a >= 0
-> b + (~a) + 1 >= 0
-> sign(b + ~a + 1) == 0
-> sign(b + ~a + 1) ^ 1 == 1
sign(x) = (x >> 31) & 1
表示 x
的符号位。
/*
* conditional - same as x ? y : z
* Example: conditional(2,4,5) = 4
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 16
* Rating: 3
*/
int conditional(int x, int y, int z)
{
x = ~(!!x) + 1;
return (y & x) + (z & (~x));
}
解题思路:原本的想法是构造 y*x + z*(!x)
这种形式作为返回值,其中 x
为 1 或 0 。但是不能用乘法,所以重新思考了一下,构造 (y & x) + (z & ~x)
,其中 x
为 0x0
或者 0xffffffff
。
x == 0
时,需要构造 x = 0x0 = -1 + 1 = ~0 + 1
。x != 0
时,需要构造 x = 0xffffffff = -1 = negate(1) = negate(!!x) = ~(!!x) + 1
。关键点是要知道 !!x
可以将 int
映射为逻辑真值。
/*
* isLessOrEqual - if x <= y then return 1, else return 0
* Example: isLessOrEqual(4,5) = 1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 24
* Rating: 3
*/
int isLessOrEqual(int x, int y)
{
int signx = (x >> 31) & 1;
int signy = (y >> 31) & 1;
int k1 = (signx ^ signy ^ 1) & (((x + (~y)) >> 31) & 1);
int k2 = (signx & (signy ^ 1));
return k1 | k2;
}
解题思路:看「最大数值」这一小节 。
/*
* logicalNeg - implement the ! operator, using all of
* the legal operators except !
* Examples: logicalNeg(3) = 0, logicalNeg(0) = 1
* Legal ops: ~ & ^ | + << >>
* Max ops: 12
* Rating: 4
*/
int logicalNeg(int x)
{
int neg = (x >> 31) & 1;
int plus = ((~x + 1) >> 31) & 1;
return (neg ^ 1) & (plus ^ 1);
}
解题思路:根据「0 既不是正数,也不是负数」这一个规律。所以如果 x
为 0 ,那么 x
和 -x
的符号位都必然是 0
。
/* howManyBits - return the minimum number of bits required to represent x in
* two's complement
* Examples: howManyBits(12) = 5
* howManyBits(298) = 10
* howManyBits(-5) = 4
* howManyBits(0) = 1
* howManyBits(-1) = 1
* howManyBits(0x80000000) = 32
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 90
* Rating: 4
*/
int howManyBits(int x)
{
int b16, b8, b4, b2, b1;
x = (x >> 31) ^ x;
b16 = (!!(x >> 16)) << 4, x >>= b16;
b8 = (!!(x >> 8)) << 3, x >>= b8;
b4 = (!!(x >> 4)) << 2, x >>= b4;
b2 = (!!(x >> 2)) << 1, x >>= b2;
b1 = (!!(x >> 1)), x >>= b1;
return b16 + b8 + b4 + b2 + b1 + x + 1;
}
解题思路:有点类似二分查找,本题自己没做出来,是看了几个题解才写出来的。
/*
* floatScale2 - Return bit-level equivalent of expression 2*f for
* floating point argument f.
* Both the argument and result are passed as unsigned int's, but
* they are to be interpreted as the bit-level representation of
* single-precision floating point values.
* When argument is NaN, return argument
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
unsigned floatScale2(unsigned uf)
{
unsigned sign = (uf & 0x80000000);
unsigned exp = (uf & 0x7f800000);
unsigned frac = (uf & 0x7fffff);
//clear sign bit
uf = uf & (0x7fffffff);
//special cases: INF, NaN, zero
if (exp == 0x7f800000 || uf == 0)
return uf | sign;
if (exp == 0) // uf is a denormalize number
{
if ((frac >> 22) == 1) // 2*uf change into a normalized number
{
exp = (1 << 23);
frac = (frac << 1) & 0x7fffff;
return sign | exp | frac;
}
else // 2*uf is still a denormalized number
return sign | (frac << 1);
}
else // uf is a normalized number, so 2*uf must be a normalized number, too
{
exp += (1 << 23);
return sign | exp | frac;
}
}
解题思路:需要熟悉浮点数编码「IEEE 754」,然后是分类讨论。
uf
是非规格化数
2*uf
仍然是非规格化数2*uf
是规格化数uf
是规格化数
那么 2*uf
必然是规格化数。
其他特殊情况
uf
是无穷大,NaN,0 。
/*
* floatFloat2Int - Return bit-level equivalent of expression (int) f
* for floating point argument f.
* Argument is passed as unsigned int, but
* it is to be interpreted as the bit-level representation of a
* single-precision floating point value.
* Anything out of range (including NaN and infinity) should return
* 0x80000000u.
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
int floatFloat2Int(unsigned uf)
{
unsigned sign = (uf & 0x80000000);
unsigned exp = (uf >> 23) & 0xff;
unsigned real = (uf & 0x7fffff) | (1 << 23);
unsigned t;
uf = uf & 0x7fffffff;
if (exp < 127) // uf < 1.0
return 0;
if (exp >= 150) // we can keep all 23 frac
{
t = exp - 150;
if (t < 8) // round(uf) is in int range, and we can put no more than 7 zeros after real
{
real = real << t;
return (sign == 0) ? real : (-real);
}
return 0x80000000; // out of range, we can't put more than 7 zeros after real
}
real = real >> (150 - exp); // the last serval bits of frac should be thrown
return (sign == 0) ? real : (-real);
}
本题其实仍然是分类讨论,但是分类的依据与某些特殊情况,需要不断测试才能写出代码,所以一定不能畏难,不会就马上找题解,这样收获会很小。上面的代码也是修改了好多次的,我也忘了最初的版本长什么样子了。解法也没什么特别的,就是不断地试,观察不通过的 Test Case ,然后修改。
首先有一个 trick 是把隐含的 1 还原的:
unsigned real = (uf & 0x7fffff) | (1 << 23);
/*
* Here is a sample:
* 155.55 = 0 10000110 00110111000110011001101
* frac = 1.00110111000110011001101
* exp = 10000110 = 134, E = 7
* so the float val is:
* fval = 1.00110111000110011001101 × 2^7
* = 10011011.1000110011001101
* when fval cast into int, the '1000110011001101' will be thrown:
* ival = 0...0 10011011 = 155
*/
此时,我们默认小数点的位置在第 23 bit 与 第 22 bit 之间。
后面我们要解决的就是小数点移动到后面的哪一位的问题,这就要根据 E = exp - 127
的具体数值来决定:
E >= 23
,那么 real
后面的所有小数位都得以保留,并且需要添加 E - 23
个 0 。E <= 22
,那么说明 real
的小数点最远就只能移动到第 1 bit 与第 0 bit 之间,小数点后的位都需要「丢弃」。「丢弃」和「补 0」都通过移位来完成。
下面解析代码中的几个 if
条件。
exp < 127
对于非规格化数,一定是小于 1.0 的,因为其值为 \(denormalied = 0.frac \times 2^{-126}\) 。对于规格化数,\(normalized = 1.frac \times 2^{exp - 127}\) ,要使 uf < 1.0
,就要令 \(exp - 127 \le -1\) ,所以可得 uf < 1.0
的等价条件为 exp <= 126
。
exp >= 150
此情况是可保留 23 位 frac
。令 E = exp - 127 >= 23
,即可得:exp >= 150
。超出 23 的部分就要补上 exp - 150
个 0 ,但是最多只能补 7 个 0 ,因为 real
本身就有 24 位,int
的符号位占 1 位。
/*
* For an example:
* 999999999.0 = 0 10011100 11011100110101100101000
* frac = 11011100110101100101000
* real = 1.11011100110101100101000
* exp = 10011100 = 0x9c = 156, E = 29
* so the float val is:
* fval = 1.11011100110101100101000 × 2^(29)
* = 111011100110101100101000 × 2^(6)
* = 111011100110101100101000 000000
* when cast into int val:
* ival = 111011100110101100101000 000000
* ival has 24 + 6 = 30 bits, put it into 32 bits is:
* ival = (00 111011100110101100101000 000000)2 = 1000000000
* the number '1000000000' is decimal
*/
127 <= exp <= 149
这里是就是单纯的「舍弃」小数点后面的数值。看上面提到的例子:
/*
* Here is a sample:
* 155.55 = 0 10000110 00110111000110011001101
* real = 1.00110111000110011001101
* exp = 10000110 = 134, E = 7
* so the float val is:
* fval = 1.00110111000110011001101 × 2^7
* = 10011011.1000110011001101
* when fval cast into int, the '1000110011001101' will be thrown:
* ival = 0...0 10011011 = 155
*/
/*
* floatPower2 - Return bit-level equivalent of the expression 2.0^x
* (2.0 raised to the power x) for any 32-bit integer x.
*
* The unsigned value that is returned should have the identical bit
* representation as the single-precision floating-point number 2.0^x.
* If the result is too small to be represented as a denorm, return
* 0. If too large, return +INF.
*
* Legal ops: Any integer/unsigned operations incl. ||, &&. Also if, while
* Max ops: 30
* Rating: 4
*/
unsigned floatPower2(int x)
{
int exp = x + 127;
if (1 <= exp && exp <= 254) // 2^x can be a normalized number
return exp << 23;
else if (exp >= 255) // 2^x out of range
return 0x7f800000;
else // x <= -127 (exp <= 0), 2^x may be a denormalized number, maybe zero
{
if (x >= -149)
return 1 << (149 + x);
else
return 0;
}
}
本题要求实现 \(2^x\) 。显然,这就是浮点数的一种十分特殊的情况:\(1.0...0 \times 2^{exp - 127}\) 。但是 \(exp \in [1,254]\) ,这需要对 exp = E + 127 = x + 127
进行讨论。注意 exp
必须要使用有符号数进行存储,因为 x + 127
仍可能为负数 。
1 <= exp && exp <= 254
说明 \(2^x\) 在规格化数的范围内,即 \(val = 1.0\cdot\cdot\cdot0 \times 2^x\) ,所以 frac = 0...0, exp = x + 127
。
exp >= 255
说明 \(2^x\) 超过了 float
的有效范围。
exp <= 0
这时候 \(2^x\) 就必须采用非规格化数来存储。非规格化数 \(denormalized = 0.frac \times 2^{-126}\) ,所以:
\(2^x\) 的最大值为 \(max = 0.10\cdot\cdot\cdot0 \times 2^{-126} = 2^{-127}, x=-127\)
\(2^x\) 的最小值为 \(min = 0.0\cdot\cdot\cdot01 \times 2^{-126} = 2^{-149}, x=-149\)
\(2^x\) 这种形式决定了 frac
中必定只有一个 1 ,而这个 1 的后面 0 的数目取决于 \(x\) 的大小,实际上不难发现是 \(149 + x\) 。
unix > ./driver.pl
Correctness Results Perf Results
Points Rating Errors Points Ops Puzzle
1 1 0 2 8 bitXor
1 1 0 2 1 tmin
1 1 0 2 8 isTmax
2 2 0 2 7 allOddBits
2 2 0 2 2 negate
3 3 0 2 13 isAsciiDigit
3 3 0 2 8 conditional
3 3 0 2 14 isLessOrEqual
4 4 0 2 9 logicalNeg
4 4 0 2 32 howManyBits
4 4 0 2 22 floatScale2
4 4 0 2 18 floatFloat2Int
4 4 0 2 10 floatPower2
Score = 62/62 [36/36 Corr + 26/26 Perf] (152 total operators)
Enjoy the fun of writing !
标签:end other aaaaa ffd 代码 位置 http expr 形式
原文地址:https://www.cnblogs.com/sinkinben/p/12395291.html