标签:排序 map 学习 htm 基本原理 效果 产生 树的高度 bit
问题给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?
方案1:用位图/Bitmap的方法,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。
还可以扩展成2-Bitmap.
问题:有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
方案:其解决方法是:用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度),即所有字符的总长度。(Trie一次插入的时间是其长度,一次查找时间是树的高度)
也可以用来字符串去重、统计top K.
数据库索引
见另一篇 数据库索引
适用范围:搜索引擎,关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,用来查找一个单词出现在哪些文档的一种映射。
以英文为例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到下面的反向文件索引:
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
如果要查找“what is it”,就是求"what","is"和"it"对应集合的交集。
问题:如何给磁盘文件排序
描述:给定一个文件,里面最多含有n个不重复的正整数(也就是说可能含有少于n个不重复正整数),且其中每个数都小于等于n,n=10^7。
输出:得到按从小到大升序排列的包含所有输入的整数的列表。
条件:最多有大约1MB的内存空间可用,但磁盘空间足够。且要求运行时间在5分钟以下,10秒为最佳结果。
外排序的一个例子是外归并排序(External merge sort),它读入一些能放在内存内的数据量,在内存中排序后输出为一个顺串(即是内部数据有序的临时文件),处理完所有的数据后再进行归并。比如,要对900 MB的数据进行排序,但机器上只有100 MB的可用内存时,外归并排序按如下方法操作:
- 读入100 MB的数据至内存中,用某种常规方式(如快速排序、堆排序等方法)在内存中完成排序。
- 将排序完成的数据写入磁盘。
- 重复步骤1和2直到所有的数据都存入了不同的100 MB的块(临时文件)中。在这个例子中,有900 MB数据,单个临时文件大小为100 MB,所以会产生9个临时文件。
- 读入每个临时文件(顺串)的前10 MB( = 100 MB / (9块 + 1))的数据放入内存中的输入缓冲区,最后的10 MB作为输出缓冲区。(实践中,将输入缓冲适当调小,而适当增大输出缓冲区能获得更好的效果。)
- 执行九路归并算法,将结果输出到输出缓冲区。一旦输出缓冲区满,将缓冲区中的数据写出至目标文件,清空缓冲区。一旦9个输入缓冲区中的一个变空,就从这个缓冲区关联的文件,读入下一个10M数据,除非这个文件已读完。这是“外归并排序”能在主存外完成排序的关键步骤 -- 因为“归并算法”(merge algorithm)对每一个大块只是顺序地做一轮访问(进行归并),每个大块不用完全载入主存。
10^7需要10^7bit,记录是否出现过(其实就是bool vis[1e7+5])
此问题用位图的方案分为以下三步进行解决:
经过以上三步后,产生有序的输出文件。
MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。但如果你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个归并排序。
例如,对于前面提到的倒排索引,
倒排索引:Map函数分析每个文档输出一个(词,文档号)的列表,Reduce函数的输入是一个给定词的所有(词,文档号),排序所有的文档号,输出(词,list(文档号))。所有的输出集合形成一个简单的倒排索引,它以一种简单的算法跟踪词在文档中的位置。
参考链接:
1.
2. 维基百科-外排序
3. CSDN_JULY-MapReduce技术的初步了解与学习
4.
bitmap、Trie、数据库索引、倒排索引、外排序、Mapreduce
标签:排序 map 学习 htm 基本原理 效果 产生 树的高度 bit
原文地址:https://www.cnblogs.com/lfri/p/12422962.html