标签:详解 push 实现 函数 def problem __init__ and back
LeetCode 面试题59 - II. 队列的最大值【Medium】【Python】【队列】
请定义一个队列并实现函数 max_value
得到队列里的最大值,要求函数max_value
、push_back
和 pop_front
的均摊时间复杂度都是O(1)。
若队列为空,pop_front
和 max_value
需要返回 -1
示例 1:
输入:
["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]
示例 2:
输入:
["MaxQueue","pop_front","max_value"]
[[],[],[]]
输出: [null,-1,-1]
限制:
1 <= push_back,pop_front,max_value的总操作数 <= 10000
1 <= value <= 10^5
辅助队列
sort_que 队列的头部永远是 que 队列的最大值。
时间复杂度: O(1)
from collections import deque
class MaxQueue:
def __init__(self):
self.que = deque()
self.sort_que = deque()
def max_value(self) -> int:
return self.sort_que[0] if self.sort_que else -1
def push_back(self, value: int) -> None:
self.que.append(value)
# sort_que: non-increasing 非递增
while self.sort_que and self.sort_que[-1] < value:
self.sort_que.pop()
self.sort_que.append(value)
def pop_front(self) -> int:
if not self.que:
return -1
res = self.que.popleft() # popleft(): O(1), pop(i): O(n)
if res == self.sort_que[0]:
self.sort_que.popleft()
return res
# Your MaxQueue object will be instantiated and called as such:
# obj = MaxQueue()
# param_1 = obj.max_value()
# obj.push_back(value)
# param_3 = obj.pop_front()
【Python】详解:为何添加辅助队列就能实现O(1)操作?
LeetCode | 面试题59 - II. 队列的最大值【Python】
标签:详解 push 实现 函数 def problem __init__ and back
原文地址:https://www.cnblogs.com/wonz/p/12442121.html