码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习(06)——K近附算法实战

时间:2020-03-10 12:16:06      阅读:60      评论:0      收藏:0      [点我收藏+]

标签:sort   drop   hbase   add   oca   数据量   knn算法   reverse   lin   

学习机器学习算法,最难的不是算法及公式推导的学习,因为这些很多都是成熟的现成的,有代码例子可以直接使用。最难的是将算法应用到实际的项目当中。

1. 算法概念

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。

使用KNN算法进行分析预测,K值的选择、距离度量和分类决策规则是该算法的三个基本要素,直接影响预测的准确率。

在运用KNN算法时,我们通常需要将相关的特征值转换为数值型,而该数值的大小、与其他特征的关联度或数值间隔关系的设计(也就是分类决策规则),都会直接影响各数据之间的距离,而最终预测计算时,所选择样本的数量(K值大小),都会直接影响最终结果的准确率。

比如下图中的例子,当K=3时,答案为红色三角形,而K=5时,结果却变为蓝色正方形。

技术图片

2. KNN实现公司电脑开关机预测

1)项目说明

我们的电脑里安装了各种软件,这些软件会时不时访问外网,通过防火墙日志记录,我们可以从中分析出公司电脑的开关机情况,查看哪些电脑正常开机关机,哪些没有一直没有关机,哪些没有开机。

使用KNN算法,实现对公司电脑开关机状态的预测功能。

2)日志信息

通过查看防火墙日志,可以看到日志中有日期、防火墙设备名称、源ip地址(局域网ip)、网卡mac地址等信息

date=2020-01-10 time=00:13:08 devname="AW-B1-901" devid="FG100ETK18038642" logid="0000000020" type="traffic" subtype="forward" level="notice" vd="root" eventtime=1578586388984224524 tz="+0800" srcip=192.168.10.13 srcport=16701 srcintf="Local-Office" srcintfrole="lan" dstip=220.175.160.92 dstport=17048 dstintf="wan1" dstintfrole="wan" poluuid="0f219964-b02c-51e9-b295-bc4f936d8f3c" sessionid=59239552 proto=17 action="accept" policyid=1 policytype="policy" service="udp/17048" dstcountry="China" srccountry="Reserved" trandisp="snat" transip=113.108.110.48 transport=16701 appcat="unknown" applist="default" duration=166 sentbyte=30 rcvdbyte=0 sentpkt=1 rcvdpkt=0 shapingpolicyid=9 shaperperipname="Limit-Wan1-15M" shaperperipdropbyte=0 sentdelta=30 rcvddelta=0 mastersrcmac="1c:ab:34:9f:a9:fb" srcmac="1c:ab:34:9f:a9:fb" srcserver=0

 

3)设计思路

在使用KNN算法预测之前,我们首先要解决的是,如何使用这些日志数据来判别电脑的开关机情况?

业务流程思考

通过分析我们日常对电脑的操作,可以得出这些操作流程:

早上上班 =》 打开电脑 =》 电脑软件请求网络访问 =》 防火墙记录请求日志 =》 晚上下班 =》 关闭电脑 =》 防火墙不再有这台电脑的请求日志记录

业务问题思考

需要思考的问题有:

  • 有时请假半天,只有半天的记录
  • 请假一天,当天没有记录
  • 电脑一直开着,没有关机
  • ip变更,有新机器加入网络或原ip改变了
  • 节假日与工作日,电脑开机情况有很大差别
  • 移动设备连接wifi如何区分
  • 虚拟机如何处理

对于这些问题,我们可以做如下处理:

  • 一天当中,挑选出4个时间段,查看是否有这些ip日志记录存在,有的则表示该时间段电脑处于开机状态,没有的则表示处于关机状态
  • 4个时间段可以选早上10点到11点、下午15点到16点、凌晨2点到3点、4点到5点,白天只要有一条记录,则表示电脑开机了,凌晨只要有一条记录,则表示电脑没关机,而对于白天没有记录凌晨才有的,则记录为没关机状态
  • 经查看日志数据分析,srcmac记录的并非是电脑网卡的mac,所以当前只能用ip地址来判断绑定电脑(如果防火墙能准确获取mac地址,则用mac判断指定电脑状态会更加准确)
  • 需要设计ip表与状态表两个数据表,从日志中获取到未记录ip,需要先在ip表中进行添加,然后再更新状态表
  • 每天需要为ip表记录在状态表里创建一条对应的绑定记录,因为员工请假后,当天没开机是没有记录的,除非不预测关机状态,只预测正常开关机与没关机两种状态
  • 节假日与工作日的数据会有很大差别,需要作节假日判断,进行区分
  • 移动设备如果在防火墙日志中区分不了,可使用独立的交换机与网段进行区分
  • 虚拟机无法区分,也当作正常电脑来处理

基于KNN算法,数据结构的设计思考

针对KNN算法采用的是通过计算预测目标与学习数据集每个数据的差值,找出K个差值最小的数据,通过统计这些数据所属类别哪一个占比较大,来决定预测目标的类别方法。在做数据设计时,我们需要将ip、节假日和工作日转换为数值,这样才能通过计算学习,来判别指定ip在指定日期里,它的开关机状态可能是哪一种。

也就是说:我们需要将ip与节假日转化为可以进行加减运行的数值,方便和预测目标求差值,从而找出距离时最小的记录。

例如:我们将ip:192.168.10.10切分为4个数值,然后将它们分别乘于不同的256,计算得出一个唯一的数值,如:

192 * 256 * 256 * 256 + 168 * 256 * 256 + 10 * 256 + 10 = 3232238090

由于我们判断的是局域网的电脑,而这些电脑的网段都是以192.168开头的,所以我们只需要计算后面的差值即可:

10 * 256 + 10 = 2570

对于IP计算出来的值,为了区分每一个IP的变化状态,需要将结果再乘于500(到底乘多少需要根据其他参数值而定,只要能达到数据与数据的分隔就可以了),扩大数值的差距(因为每个人的操作习性不一样,IP差值太小时,很容易在预测计算时,发生越界,所求出差值最小的数据可能是多个不同ip的记录。比如192.168.10.10与192.168.10.11之间,相差1,预测时它们分别与其他参数相加,有可能筛选出来的结果就会混杂在一块)

(10 * 256 + 10) * 500 = 1285000

节假日与工作日,也可以转换为0至6(即周一到周日)来进行区分,对于周六、日等节假日,为了与工作日拉开距离,提升分析的准确率,值都设置为7。

而法定假期中,公历假期可以直接通过日期进行判断,农历假期则可以调用相关插件,获取农历日期来进行判断处理。对于节假日调休等情况,由于有更多的变数很难通过计算得知,对预测影响不大可以不作考虑。

通过上面转换,我们可以得出以下结果:

# 日期      IP           状态
2020-01-01 192.168.10.10 没开机   (周三,元旦)
2020-01-02 192.168.10.10 没关机   (周四)
2020-01-03 192.168.10.10 正常     (周五)
2020-01-04 192.168.10.10 没开机   (周六)
2020-01-05 192.168.10.10 没开机   (周日)
2020-01-06 192.168.10.10 正常     (周一)
2020-01-05 192.168.10.14 没开机   (周日)
2020-01-06 192.168.10.14 正常     (周一)

# 转换结果为
# 日期     IP值 周数
2020-01-01 1285000 7
2020-01-02 1285000 3
2020-01-03 1285000 4
2020-01-04 1285000 7
2020-01-05 1285000 7
2020-01-06 1285000 0
2020-01-06 1287000 7
2020-01-06 1287000 0

当我们要预测日期为2020-01-10,IP为192.168.10.10的开关机状态时,就可以先将预测参数先转为对应的数值,即2020-01-10是周五,即值为4,IP值为1285000,这两个值做为参数代入KNN算法中进行计算。

# 计算结果(将学习数据集中每一条数据都与预测目标相减,并将数据中的值求平方后相加————主要是为了去除负数)

相减后IP值 相减后周数值 相减后两参数平方之和
0          3           9
0          -1          1
0          0           0
0          3           9
0          3           9
0          -4          16
2000       3           4000009
2000       -4          4000016

通过从小到大排序,如果K值取1,则可以得出与目标值最近的数据为2020-01-03 192.168.10.10 正常 (周五)这一条数据,预测结果为“正常开关机”状态。

在做KNN预测时,数据量越大预测结果越准确,比如如果周五员工有8次正常开关机,2次没关机,预测结果肯定为正常开关机状态,在概率上更靠近真实结果。

而K的取值也是一样,通过使用大量数据进行测试,就可以找出预测成功率最高的区间,从而能更精确的进行预测。

在特征转数值时,有时候会遇到无法直接用数值代替的特征,可以使用索引或根据主观判断打分等方式进行转换,转换后需要使用大量数据对预测模型进行测试,然后根据预测结果的准确度进行微调,最终找到最优的数值模型。

ip表与状态表设计

ip表数据字典

表名字段名称字段类型主键是否允许空默认值字段说明
pc_info id serial PK   0 主键Id
pc_info label text       电脑标签,标注是谁的电脑
pc_info ip text IX     局域网内部ip
pc_info ip_num int     0 ip地址转int值

主要用来记录当前内网所使用的ip,绑定使用人信息,以及按前面要求,将ip转为数值,方便knn算法的计算使用

状态表数据字典

表名字段名称字段类型主键是否允许空默认值字段说明
pc_info id serial PK   0 主键Id
pc_info date timestamp IX     日期
pc_info pc_info_id int IX   0 ip表id
pc_info weekdays int     0 周工作日标识:0~4=工作日(周一到周五);7=休息日
pc_info ten_points_state int     0 10点开机状态
pc_info fifteen_points_state int     0 15点开机状态
pc_info two_points_state int     0 第二天凌晨2点开机状态
pc_info four_points_state int     0 第二天凌晨4点开机状态
pc_info calculate text       预测结果:normal=正常开关机;on=未关机;no_boot=没开机
pc_info state text     no_boot 电脑实际状态:normal=正常开关机;on=未关机;no_boot=没开机

状态表记录每天内部电脑的通讯情况记录,并根据这些记录所判别的电脑状态结果。同时也会记录使用KNN算法进行的预测结果,用于判断预测成功率。

3. 编码实现

编写代码实现前面设想的功能,需要分几个步骤处理,首先要做的是数据清洗,从日志中将我们需要的数据提取出来;然后对这些数据进行加工处理,转化为可能提供给机器学习算法使用的数据;然后再是编码算法代码,实现预测操作。

1)数据清洗

日志每五分钟会自动进行切割,生成新的日志文件,可以定时(前面所指定的检查时间)对日志文件进行批量检查处理。

本文主要是介绍根据KNN算法实现项目功能,所以略过数据清洗等功能实现。

针对我们想要实现的功能,我们只需要在固定时间段从日志中提取该时间内请求的所有ip即可。可以直接从日志文件中提取,也可以使用Flume+Kafka+HBase方式,将日志数据从各系统中收集整理好,再从HBase中获取。

# 10点防火墙请求ip集
192.168.10.38,192.168.20.30,192.168.20.23...192.168.20.34,192.168.20.41

# 15点防火墙请求ip集
192.168.10.28,192.168.10.23,192.168.10.26...192.168.20.9,192.168.20.15

# 第二天凌晨2点防火墙请求ip集
193.192.168.10.104,192.168.10.97,192.168.10.93...192.168.10.95,192.168.10.90

# 第二天凌晨4点防火墙请求ip集
192.168.10.96,192.168.10.66,192.168.20.89...192.168.10.57,192.168.10.73

2)数据加工

ip前面虽然已经提取出来了,但还需要将它们更新到数据库中,方便后续KNN算法的调用。所以需要实现一个状态更新服务,将清洗好的数据,更新到ip表与状态表中。

主要思路是:

  • 开发一个pc状态定时更新服务,该服务在指定时间启动,读取清洗好的数据(ip列表),将这些ip记录更新到ip表中存储起来(已存在则不操作,不存在则添加)
  • 在状态表为每一个ip创建一条对应的记录,日期为当天的时间。这主要是为了防止有些人请假或节假日关机,对应的ip没有请求日志,会被忽略掉。创建记录时,默认电脑实际状态为关机状态。
  • 获取ip对应的id值,然后根据执行的时间,如果是白天则直接更新状态表中对应字段的状态值,表示该电脑已启动。如果是凌晨有记录,则表示该电脑一直未关机,将电脑状态更新为没关机状态。
"""
每天定时更新pc开关机状态服务
"""
import logging
import os
import sys
import json
import datetime
import zhdate
from common import log_helper, datetime_helper, hbase_helper, convert_helper
from common.string_helper import string
from config import const
from logic import pc_info_logic, pc_on_off_state_logic


# 获取本脚本所在的路径
pro_path = os.path.split(os.path.realpath(__file__))[0]
sys.path.append(pro_path)

# 定义日志输出格式
logging.basicConfig(level=logging.INFO,
                    format=%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s,
                    filename=const.SERVICE_LOG_FILE_PATH + "/pc_on_off_state_update_service.log",
                    filemode=a)

# 定义数据表名称
table = firewall

def update_state(update_date, check_time):
    """
    更新pc开关机状态
    :param update_date: 更新状态的日期时间。需要判断是否是凌晨时间,凌晨是否开关机状态,需要同步的是昨天电脑状态数据,即下班后电脑开关机状态
    :param check_time: 状态检查时间为:早上10点,下午的15点和第二天凌晨2点与4点
    :return:
    """
    # 记录服务启动时间
    start_time = datetime.datetime.now()
    run_time_log = \n-----------------------------------\n
    run_time_log = run_time_log + 开始: + str(start_time) + \n

    with hbase_helper.Hbase() as hbase:
        # 从hbase中读取指定时间已处理好(已清洗)的分析汇总信息
        result = hbase.get(table, summary:hour,{},60.format(check_time))
        if not result:
            log_helper.info(summary:hour,{},60 数据不存在.format(check_time), True)
            return
        # 获取各防火墙ip访问统计数据,并转为json格式
        data = json.loads(result[log_analysis:data])
        # 提取研发部该时间段内所有记录在防火墙日志中的ip数据,并过滤掉非研发部的其他ip数据
        # [‘192.168.10.38‘,‘192.168.20.30‘,‘192.168.20.23‘...‘192.168.20.34‘,‘192.168.20.41‘]
        ips = [ip for dev in data for ip in data[dev] if 192.168.10. in ip or 192.168.20. in ip]
        # 对ip数据进行去重操作
        ips = set(ips)
        # 判断日期是否是工作日,并返回对应日期的值
        weekdays = get_weekdays(update_date)
        # 初始化状态表逻辑类
        _pc_on_off_state_logic = pc_on_off_state_logic.PcOnOffStateLogic()
        # 检查当天的状态数据是否已生成,未生成则进行批量添加操作
        if not _pc_on_off_state_logic.exists(date=\‘{}\‘.format(update_date)):
            _pc_on_off_state_logic.execute(insert into pc_on_off_state(date, pc_info_id, weekdays) select \‘{}\‘, id, {} from pc_info.format(update_date, weekdays))
        # 初始化ip表逻辑类
        _pc_info_logic = pc_info_logic.PcInfoLogic()
        # 遍历所有ip,并对这些ip进行相关的处理操作
        for ip in ips:
            # 检查当前ip是否已添加到ip表,不存在的则进行添加操作
            model = _pc_info_logic.get_model_for_cache_of_where(ip=\‘{}\‘.format(ip))
            if not model:
                # 将ip转为数值
                _ip = ip.split(.)
                ip_num = (convert_helper.to_int0(_ip[2]) * 256 + convert_helper.to_int0(_ip[3])) * 500
                # 组合ip表更新数据
                fields = {
                    ip: string(ip),
                    ip_num: ip_num
                }
                # 添加新ip记录
                model = _pc_info_logic.add_model(fields, returning=*)
                # 状态表也添加一条新的ip记录
                _pc_on_off_state_logic.add_model({date: string(update_date), pc_info_id: model.get(id)})

            # 组合状态表更新数据
            fields = {
                date: string(update_date),
                pc_info_id: model.get(id),
                weekdays: weekdays,
                state: string(normal)   # 只要有ip请求,即表示该电脑当开已开机,设置它的默认值为正常开关机状态
            }
            # 通过判断当前检查时间,来同步更新各时间段的状态
            if check_time.hour == 10:
                fields[ten_points_state] = 1
            elif check_time.hour == 15:
                fields[fifteen_points_state] = 1
            # 凌晨只要有一条请求记录,就表示这台电脑没有关机
            elif check_time.hour == 2:
                fields[two_points_state] = 1
                fields[state] = string(on)  # 设置为没关机状态
            elif check_time.hour == 4:
                fields[four_points_state] = 1
                fields[state] = string(on)
            # 更新状态表数据
            _pc_on_off_state_logic.edit(fields, date=\‘{}\‘ and pc_info_id={}.format(update_date, model.get(id)))

    # 记录程序运行结束时间
    run_time_end = datetime.datetime.now()
    run_time_log = run_time_log + 服务执行结束: + str(run_time_end) + \n
    run_time_log = run_time_log + 总用时: + str(run_time_end - start_time) + \n
    run_time_log = run_time_log + -----------------------------------\n
    print(run_time_log)

def get_weekdays(date):
    """判断日期是否是工作日,并返回对应标识"""
    if is_holidays(date):
        return 7
    elif date.weekday() >= 5:
        return 7
    return date.weekday()


def is_holidays(date):
    """
    判断是否为节假日
    :param date: 需要检测的日期
    :return: 返回True或False
    """
    # 判断是否是阳历的节假日(元旦、五一、十一)
    if (date.month == 1 and date.day == 1) or (date.month == 5 and date.day == 1) or             (date.month == 10 and (date.day >= 1 or date.day <=7)):
        return True
    # 使用zhdate包,将阳历日期转换成农历日期对象
    lunar_calendar = zhdate.ZhDate.from_datetime(datetime.datetime(date.year, date.month, date.day))
    # 检查是否是过年、端午节和中秋节,清明暂时无法计算出来,不做判断
    lunar_calendar = lunar_calendar.chinese()
    if 腊月二十八 in lunar_calendar or 腊月二十九 in lunar_calendar or 腊月三十 in lunar_calendar or             正月初一 in lunar_calendar or 正月初二 in lunar_calendar or 正月初三 in lunar_calendar or             正月初四 in lunar_calendar or 正月初五 in lunar_calendar or 正月初六 in lunar_calendar or             五月初五 in lunar_calendar or 八月十五 in lunar_calendar:
        return True
    return False


if __name__ == __main__:
    ### 接收参数 ###
    if len(sys.argv) < 2:
        # 检查时间为10点、15点和第二天凌晨2点与4点,日志数据的清洗,也需要等该时间过后日志记录全部生成才能进行,
        # 所以运行本服务需要延后一小时,而更新处理时间得减1,调整回指定的时间
        now = datetime_helper.timedelta(h, datetime.datetime.now(), -1)
    else:
        log_helper.info(接收参数: + sys.argv, True)
        # 接收命令行参数,设置日志分析起始时间
        now = convert_helper.to_datetime(sys.argv[1])

    if not now:
        log_helper.info(日期参数格式必须为:2019-11-11 11:00:00, True)
        sys.exit()

    # 设置更新数据的日期
    update_date = now.date()
    # 设置检查时间
    check_time = datetime.datetime(now.year, now.month, now.day, now.hour)

    # 检查是否是凌晨,凌晨的开关机状态同步的是昨天电脑状态数据,即下班后电脑开关机状态
    if now.hour < 6:
        # 设置日期为昨天
        update_date = datetime_helper.timedelta(d, now, -1).date()

    # 执行状态更新操作
    update_state(update_date, check_time)

    log_helper.info(任务提交完毕, True)

 

更新后数据表结果

技术图片

3)使用KNN算法实现预测功能

从数据表中获取机器学习数据

    # 初始化ip表与状态表逻辑类
    _pc_info_logic = pc_info_logic.PcInfoLogic()
    _pc_on_off_state_logic = pc_on_off_state_logic.PcOnOffStateLogic()
    # 组合sql查询语句,获取最近2个月的分析数据作为机器学习数据
    # select pc_info.id,ip,ip_num,weekdays,state from pc_info left join pc_on_off_state on pc_info.id=pc_on_off_state.pc_info_id where ‘2019-11-12‘<=date and date<‘2020-01-11‘
    sql = """
        select pc_info.id,ip,ip_num,weekdays,state
        from pc_info left join pc_on_off_state on pc_info.id=pc_on_off_state.pc_info_id
        where ‘{}‘<=date and date<‘{}‘
    """.format(datetime_helper.timedelta(d, date, -60), datetime_helper.to_today())
    # 提交查询,获取列表数据
    # [{‘id‘: 101, ‘ip‘: ‘192.168.10.19‘, ‘ip_num‘: 1289500, ‘weekdays‘: 2, ‘state‘: ‘on‘}, {‘id‘: 100, ‘ip‘: ‘192.168.20.2‘, ‘ip_num‘: 2561000, ‘weekdays‘: 2, ‘state‘: ‘on‘}, ...]
    result = _pc_info_logic.select(sql)
    
    # 从查询结果列表中,提取ip_num与weekdays两个字段值,并组成list
    # [[1289500, 2], [2561000, 2], ...]
    ml_data = [[item[ip_num], item[weekdays]] for item in result]
    # 将最后一列值存储到标签集中(特征所对应的答案)
    # [‘on‘, ‘on‘, ‘on‘, ‘normal‘, ... ]
    ml_label = [item[state] for item in result]
    
    # 将数组转换为numpy数组,得到机器学习数据矩阵ml_data
    # [[1289500, 2]
    #  [2561000, 2]
    #  [1355000, 2]
    #  ...]
    ml_data = numpy.array(ml_data)
    # 将数组中的值由字符串转为浮点型(int型数值如果不进行归一化处理,当数比较大时执行平方操作,会让值溢出越界,正数值变成负数值,产生错误)
    # [[1.2895e+06, 2.0000e+00]
    #  [2.5610e+06, 2.0000e+00]
    #  [1.3550e+06, 2.0000e+00]
    #  ...]
    ml_data = ml_data.astype(float)
    
    # 到此,我们已获得机器学习需要使用到的数据矩阵ml_label以及对应的标签(答案)ml_label

 

对每个ip分别进行预测操作

从ip表中读取全部ip数据,对每个ip分别进行预测,将预测结果更新到状态表中

    # 获取当前日期
    date = datetime.datetime.now().date()
    # 检查当前时间是否为节假日
    weekdays = get_weekdays(date)
    # 添加当天需要预测与记录的数据
    if not _pc_on_off_state_logic.exists(date=\‘{}\‘.format(date)):
        _pc_on_off_state_logic.execute(insert into pc_on_off_state(date, pc_info_id, weekdays) select \‘{}\‘, id, {} from pc_info.format(date, weekdays))

    # 从ip表中读取全部ip数据
    result = _pc_info_logic.get_list(is_return_list=True)
    # 对每个ip分别进行预测
    for item in result:
        # 获取id、ip和ip值参数
        id = item.get(id)
        ip = item.get(ip)
        ip_num = item.get(ip_num)
        # 组合成预测参数
        # [1.299e+06, 7.000e+00]
        check_data = numpy.array([ip_num, weekdays])
        check_data = check_data.astype(float)
        # 进行预测操作
        label = knn_helper.knn_classify(ml_data, ml_label, check_data, 9)

        # 组合更新字段,更新预测结果
        fields = {
            calculate: string(label)
        }
        _pc_on_off_state_logic.edit(fields, date=\‘{}\‘ and pc_info_id={}.format(date, id))

 

KNN算法实现

下面有两种完成KNN算法的代码,方法一利用python的特性简化的代码,方法二是对算法进行拆解说明的方法,代码实现主要参考: https://github.com/apachecn/AiLearning/blob/master/docs/ml/2.k-近邻算法.md 文档

# 实现方法一
def knn_classify(ml_data, ml_label, test_data, k):
    """
    kNN分类算法函数
    :param ml_data: 训练数据特征集(features)
    :param ml_label: 训练数据特征标签集(labels————特征集答案)
    :param test_data: 用于knn分类测试的数据
    :param k: 选择最近邻的数目
    :return: 返回knn算法预测的结果(所对应的标签值————分类值label)
    """
    # 让预测参数矩阵(test_data)对每一个训练集矩阵(ml_data)相减,并求平方值(将负数转为正数),
    # 然后对矩阵中的值执行求和运算,得出每个训练集矩阵数据与预测参数矩阵的距离值
    distances = numpy.sum((test_data - ml_data) ** 2, axis=1)
    # 将矩阵距离值(distances)从小到大排序,并提取其对应的index(索引),然后用索引值生成新的矩阵
    # 只取出排在前k位的索引值,用于ml_label提取对应的标签
    labels = [ml_label[index] for index in distances.argsort()[0: k]]
    # 使用Counter函数统计列表(labels)中,各标签出现的次数,并按从大到小排列,
    # 然后返回标签数最多的元素,将这个元素的标签返回给调用程序
    return Counter(labels).most_common(1)[0][0]

# 实现方法二
def knn_classify2(ml_data, ml_label, test_data, k):
    """
    kNN分类算法函数
    :param ml_data: 训练数据特征集(features)
    :param ml_label: 训练数据特征标签集(labels————特征集答案)
    :param test_data: 用于knn分类测试的数据
    :param k: 选择最近邻的数目
    :return: 返回knn算法预测的结果(所对应的标签值————分类值label)
    """
    ### 1. 距离计算
    # 获取训练集数据大小
    data_size = ml_data.shape[0]

    # 使用numpy的tile函数,生成和训练样本对应的矩阵,并与训练样本求差
    """
    tile会将第一参数中的数组复制成指定数量的矩阵
    比如:numpy.tile(test_data, (10, 1))
        test_data = [1.299e+06, 7.000e+00]
        当第二个参数为(5, 1)时,则表示会将创建一个行数为10的1维数组集,每一行等于test_data值的矩阵
        即:
        result = [[1.299e+06, 7.000e+00],
                  [1.299e+06, 7.000e+00],
                  [1.299e+06, 7.000e+00],
                  [1.299e+06, 7.000e+00],
                  [1.299e+06, 7.000e+00]]

    numpy.tile(test_data, (data_size, 1))
    则会用test_data数据生成一个与ml_data一样大小的一个矩阵,用于与ml_data进行运算
    """
    data_tile = numpy.tile(test_data, (data_size, 1))

    # 将测试数据test_data生成的矩阵与训练数据特征集数据ml_data相减,求两者的不同点
    """
    比如训练集矩阵
    ml_data = [[1.2895e+06, 2.0000e+00]
               [2.5610e+06, 2.0000e+00]
               [1.3550e+06, 2.0000e+00]
               [1.3615e+06, 2.0000e+00]
               [2.5720e+06, 2.0000e+00]
               [1.2815e+06, 2.0000e+00]
               ...]
    data_tile - ml_data = [[ 9.5000e+03, 5.0000e+00]
                           [-1.2620e+06, 5.0000e+00]
                           [-5.6000e+04, 5.0000e+00]
                           [-6.2500e+04, 5.0000e+00]
                           [-1.2730e+06, 5.0000e+00]
                           [ 1.7500e+04, 5.0000e+00]
                           ...]
    """
    diff_mat = data_tile - ml_data

    # 矩阵相减计算出的结果求平方值
    # 通过前面两个矩阵求差值后,得出的矩阵中的值有可能为负数,求平方是让结果全都变为正数,方便后面对结果进行比较与排序
    """
    # 对矩阵里的每个值都求平方,这些值可能会有点大,可以在前面做归一化处理,让这些值变小
    diff_mat_square = [[9.02500000e+07, 2.50000000e+01]
                       [1.59264400e+12, 2.50000000e+01]
                       [3.13600000e+09, 2.50000000e+01]
                       [3.90625000e+09, 2.50000000e+01]
                       [1.62052900e+12, 2.50000000e+01]
                       [3.06250000e+08, 2.50000000e+01]
                       ...]
    """
    diff_mat_square = numpy.square(diff_mat)

    # 将矩阵的每一行相加
    """
    将预测参数矩阵与训练集矩阵求差求平方后,得出的结果再相加,这样就可以计算出预测参数与训练集中每个数据的距离(差距)值了,差距值越小,就表示与预测结果越相似
    distances = [9.02500250e+07, 1.59264400e+12, 3.13600002e+09 ...]
    """
    distances = diff_mat_square.sum(axis=1)

    # 根据距离排序从小到大的排序,返回对应的索引位置
    """
    argsort() 会将矩阵(distances)中的值从小到大排列,并提取其对应的index(索引),然后用索引值生成新的矩阵
    例如:
        y = numpy.array([8,0,52,7,66,21,36])
        矩阵y使用argsort函数进行排序后,值为其值的索引组成的矩阵
        y.argsort() = numpy.array([1,3,0,5,6,2,4])
        表示的是y[1] < y[3] < y[0] < y[5] < y[6] < y[2] < y[4]
              即:0 < 7 < 8 < 21 < 36 < 52 < 66

    使用distances.argsort()即表示,通过以上的计算,根据前面计算结果的相似度,生成了最相似的排序,排在最前面的验证码与测试验证码最相似
    distances_sort = [4172, 3896, 4160, 388, 4048, 3038, 3097, 1035, 3141 ...]
    """
    distances_sort = distances.argsort()

    ### 2. 从排序中,选取距离最小的k个点(选取与测试验证码最相似的k个训练数据)
    class_count = {}
    for i in range(k):
        # 从学习标签集(答案集)中提取最相似的标签值
        label = ml_label[distances_sort[i]]
        # 通过字典累加的方式,统计最相似的各个标签数量
        # class_count = {‘no_boot‘: 3, ‘on‘: 5, ‘normal‘: 1}  表示经过相似度计算,与测试相似的值中,no_boot有3个,on有5个,normal有1个
        class_count[label] = class_count.get(label, 0) + 1

    # 3. 将相似度统计结果从大到小进行排序
    # class_count_sorted = [(‘on‘, 5), (‘no_boot‘, 3), (‘normal‘, 1)]
    class_count_sorted = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)

    # 返回第一个(数量最多)的标签
    return class_count_sorted[0][0]

 

预测后数据表结果

技术图片

技术图片

3. KNN算法参数调优

完成开发以后,预测的准确率并不一定是最高的,需要调整算法的K值参数,以及对数据进行优化调整,才可能提升预测成功率。

K值的调整比较简单,只需要写一个脚本,通过调整K值的大小,对历史数据进行预测,并将预测结果与实际结果进行比较,计算出预测的准确率,然后汇总所有预测准确率计算其平均值,得出不同K值情况下,使用不同数量机器训练数据所预测出来的准确率,从中找出最优预测结果的参数,数据项与K值参数来使用。

技术图片

对于数据,需要对加工后的数据(KNN训练数据集)进行检查,查看里面的数据是否准确,是否存在问题,算法与规则是否符合要求。

比如这个例子中,weekdays值的变化,对预测结果有什么样的影响?对于节假日调休,对长期的预测准确率会有什么影响?ip转为int值后是否需要将ip之间拉开距离?拉开ip值与值距离的参数怎么设置?用10、50、100等值,会造成什么样的影响?为什么要用500?如果预测参数由两个变为更多时,这个值应该怎么设置?训练数据混杂在一块,对测试结果有什么影响?是否需要故意混杂这些数据,用于计算最近距离的数据有更多的可能性?在代码运行过程中,也需要通过debug或打印结果的方式进行查看分析,比如不使用浮点类型和归一化矩阵数据时,会有什么样的影响?对预测准确率有什么影响?如果一个ip使用很长时间后,不再使用或者某种习惯改变了,对于预测结果有什么样的影响?应该如何优化?参数应该如何设置才更加合理?

在算法参数调优时,需要多开动脑筋,多观察多思考多问为什么,这样才能及时发现问题,并对问题进行修正,多动手测试数据,才能找出最优的参数设置。

4. 其他例子

验证码识别与约会数据学习例子代码:

Knn算法例子

5. 参考资料

https://github.com/apachecn/AiLearning/blob/master/docs/ml/2.k-近邻算法.md

https://baike.baidu.com/item/k近邻算法/9512781?fr=aladdin

机器学习(06)——K近附算法实战

标签:sort   drop   hbase   add   oca   数据量   knn算法   reverse   lin   

原文地址:https://www.cnblogs.com/EmptyFS/p/12190306.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!