标签:损坏 分区 时间复杂度 HERE 声明 用户访问 共享 需求 钓鱼
一直在面阿里,从提前批投蚂蚁中间件与阿里中间件,最后阿里中间件面完了hr,但是很遗憾最后没能进,被调到了盒马。不过最终还是拿到了盒马的offer。期间还面了EMC、网易、携程(水到不行)、美团、拼多多,目前出了美团跟拼多多没有出结果,其他几家公司也都顺利拿到意向,在此回馈一波大家。面经部分出自阿里,其他几家公司有少部分补充,内容是个人整理,如有不对,还请纠正,谢谢!
网络编程
ISO模型与协议
应用层:为操作系统或网络应用程序提供访问网络服务的接口。协议Telnet、FTP、HTTP、SNMP、DNS
http1.0:需要使用keep-alive参数来告知服务器端要建立一个长连接
http1.1:默认长连接。支持只发送header信息,可以用作权限请求。支持Host域。
http2.0:多路复用的技术,做到同一个连接并发处理多个请求。HTTP2.0使用HPACK算法对header的数据进行压缩。支持HTTP2.0的web server请求数据的时候,服务器会顺便把一些客户端需要的资源一起推送到客户端,免得客户端再次创建连接发送请求到服务器端获取。这种方式非常合适加载静态资源。
表示层:对上层数据进行变换(加密、解密、压缩、格式转换等),确保两台主机的应用层程序能过理解。协议ASCII、ASN.1、JPEG、MPEG
会话层:负责管理主机之间的会话进程,负责建立、管理、终止进程之间的会话。
传输层:将上层数据分段并提供端到端的、可靠的或不可靠的传输,还要处理端到端的差错控制和流量控制问题。协议TCP、UDP、SPX
网络层:对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能。协议IP、IPX、RIP、OSPF
数据链路层:在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。协议SDLC、HDLC、PPP、STP、帧中继
物理层:为上层协议提供了一个传输数据的物理媒体。
TCP\IP模型与协议
应用层:单位是数据段,协议有FTP、TELNET、HTTP、SMTP、SNMP、TFTP、NTP、DNS
运输层:单位是数据包,协议有TCP、UDP
网络层:单位是数据帧,协议有IP
网络接口层:单位是比特,ARP、RARP
三次握手与四次挥手
tcp拆包粘包
由于一批发送的数据太多或缓冲区太小,将一批数据分成多个segment来发送,叫拆包。
将多批小数据写入一个缓冲区,或读取不及时,一个缓冲区存在多批数据,叫粘包。
解决方式:根据消息头中的长度与偏移量来重组数据。设置定长消息,使得一个缓冲区中的segment总是一批数据的。设置消息边界。
BIO NIO AIO
BIO:同步阻塞IO,每个请求都要一个线程来处理。
NIO:同步非阻塞IO,一个线程可以处理多个请求,适用于短连接、小数据。
AIO:异步非阻塞IO,一个线程处理多个请求,使用回调函数实现,适用于长连接、大数据。
DDOS***原理与防御方式
SYN flood:伪造ip地址发送请求,占满半连接队列,导致正常链接被服务器抛弃。***方需要很高的带宽资源。
ACK flood:大量ACK连接请求服务器,服务器需要花费CPU资源去查询连接队列并回应。只有当流量很高时才会对服务器造成影响。
Connection Flood:利用真实IP,在服务器上建立大量连接,从而占满服务器连接队列,导致正常连接被丢弃。
HTTP Get Flood:发送大量会产生sql查询的连接,使得数据库负载很高。
CSRF跨站请求伪造原理
***者盗用了你的身份,以你的名义发送恶意请求。
CSRF***是源于WEB的隐式身份验证机制!WEB的身份验证机制虽然可以保证一个请求是来自于某个用户的浏览器,但却无法保证该请求是用户批准发送的!
防御方式:1.验证码;2. 后台生成token,让前端请求携带。3.使用对称加密,后端随机给前端一个密钥,前端进行加密,后端解密。
会话劫持
通过暴力破解、 预测、窃取(通过XSS***)等方式获取到用户session
防御方式
更改Session名称
关闭透明化Session ID。透明化Session ID指当浏览器中的Http请求没有使用Cookie来存放Session ID时,Session ID则使用URL来传递。
设置HttpOnly。通过设置Cookie的HttpOnly为true,可以防止客户端脚本访问这个Cookie,从而有效的防止XSS***。
XSS***
XSS***是Web***中最常见的***方法之一,它是通过对网页注入可执行代码且成功地被浏览器执行,达到***的目的,形成了一次有效XSS***,一旦***成功,它可以获取用户的联系人列表,然后向联系人发送虚假诈骗信息,可以删除用户的日志等等,有时候还和其他***方式同时实施比如SQL注入***服务器和数据库、Click劫持、相对链接劫持等实施钓鱼,它带来的危害是巨大的,是web安全的头号大敌。
XSS反射型***,恶意代码并没有保存在目标网站,通过引诱用户点击一个链接到目标网站的恶意链接来实施***的。
XSS存储型***,恶意代码被保存到目标网站的服务器中,这种***具有较强的稳定性和持久性,比较常见场景是在博客,论坛等社交网站上,但OA系统,和CRM系统上也能看到它身影,比如:某CRM系统的客户投诉功能上存在XSS存储型漏洞,***提交了恶意***代码,当系统管理员查看投诉信息时恶意代码执行,窃取了客户的资料,然而管理员毫不知情,这就是典型的XSS存储型***。
+解决方法
在表单提交或者url参数传递前,对需要的参数进行过滤
过滤用户输入。检查用户输入的内容中是否有非法内容。如<>(尖括号)、”(引号)、 ‘(单引号)、%(百分比符号)、;(分号)、()(括号)、&(& 符号)、+(加号)等
RPC与HTTP服务的区别
数据库原理
MYISAM与innodb搜索引擎原理
MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。其采用索引文件与数据文件,索引文件只存放索引,叶子节点存放数据的物理地址。数据文件存放数据。其索引方式是非聚集的。
InnoDB也使用B+Tree作为索引结构。但是它的主索引与数据都放在一个文件中。这种索引叫做聚集索引,因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。
区别一:InnoDB的主索引与数据都放在一个文件中。而MYISAM是分开存放的。
区别二:InnoDB的辅助索引data域存储相应记录主键的值而不是地址。
区别三:InnoDB的主键索引是聚集索引,而MYISAM不是聚集索引。
索引,聚簇索引和二级索引的加锁区别
聚集(clustered)索引,也叫聚簇索引。数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。
非聚集(unclustered)索引。该索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同,一个表中可以拥有多个非聚集索引。会发生二次查询。
稠密索引:稠密索引文件中的索引块保持键的顺序与文件中的排序顺序一致。
稀疏索引:稀疏索引没有为每个数据都创建一个索引,它比稠密索引节省了更多的存储空间,但查找给定值的记录需更多的时间。只有当数据文件是按照某个查找键排序时,在该查找键上建立的稀疏索引才能被使用,而稠密索引则可以应用在任何的查找键。
联合索引:将一张表中多个列组成联合索引(col1,col2,col3),其生效方式满足最左前缀原则。
最左前缀:假如我们创建了联合索引(col1,col2,col3),那么相当于创建了(col1),(col1,col2),(col1,col2,col3)这3个索引,然后where条件会根据出现的列名挑选最严格的索引。例如where col1=? and col2=? and col3=?,那么就会使用(col1,col2,col3);如果where col1=? and col3 =?,那么就会使用(col1);如果where col2=? and col3=?,那么一个都不会使用。因此在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。
选择性:不重复数占所有记录的比例,假如有10w条记录,unique之后有9w条,那么选择性位90%。主要有两个作用:1. 查看某一列是否有必要建立索引;2. 对于String、hash值、日期等字段,应该取多少位来建立索引(即使用前缀索引),因为主键越短,整个索引表越小。
覆盖索引:对于二级索引而言,在innodb中一般是需要先根据二级索引查询到主键,然后在根据一级索引查询到数据。但是如果select的列都在索引中,就避免进行一级查询。
主键选择
在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。
where 1 = 1:能够方便我们拼sql,但是使用了之后就无法使用索引优化策略,因此会进行全表扫描,影响效率。
分表分库
水平拆分:依据表中的数据的逻辑关系,将同一个表中的数据依照某种条件拆分到多台数据库(主机)上面。按照1个或多个字段以及相应的规则,将一张表重的数据分到多张表中去。比如按照id%5的规则,将一张大表拆分成5张小表。适合具有超大表的系统。
垂直拆分:依照不同的表(或者Schema)来切分到不同的数据库(主机)之上。一般按照模块来分库。适合各业务之间耦合度非常低的系统。
validationQuery:用来验证数据库连接的查询语句,这个查询语句必须是至少返回一条数据的SELECT语句。
select锁定记录
select * from table where ?;不加锁
将查询放到事物中
select * from table where ? lock in share mode;加共享锁
select * from table where ? for update;加排它锁
insert, update, delete;加排它锁
隔离级别
read uncommit:读不加锁,写加共享锁。会产生脏读、幻读。
read commit:读加共享锁,写加排它锁,但不加间隙锁。间隙锁的主要作用是防止不可重复读,但会加大锁的范围。
repeatable read(innodb默认):读加共享锁,写加间隙排它锁。注意,Innodb对这个级别进行了特殊处理,使得这个级别能够避免幻读,但不是所有引擎都能够防止幻读!(网易面试官问)
serialization:会给整张表加锁,强一致,但是效率低。
innodb中的锁
MVCC(multi-Version Concurrency Control):读不加锁,读写不冲突。适合写少读多的场景。读操作分为:快照读(返回记录的可见版本,不加锁)、当前读(记录的最新版本,加锁,保证其它记录不修改)。
LBCC(Lock-Based Concurrency Control):
join原理
Simple Nested-Loop Join:效率最低,按照join的次序,在join的属性上一个个扫描,并合并结果。
Index Nested-Loop Join:效率最高,join的属性上面有索引,根据索引来匹配。
Block Nested-Loop Join:用于没有索引的列。它会采用join buffer,将外表的值缓存到join buffer中,然后与内表进行批量比较,这样可以降低对外表的访问频率
galera
多主架构:真正的多点读写的集群,在任何时候读写数据,都是最新的。
同步复制,各节点间无延迟且节点宕机不会导致数据丢失。
紧密耦合,所有节点均保持相同状态,节点间无不同数据。
无需主从切换操作。
无需进行读写分离。
并发复制:从节点在APPLY数据时,支持并行执行,有更好的性能表现。
故障切换:在出现数据库故障时,因为支持多点写入,切的非常容易。
热插拔:在服务期间,如果数据库挂了,只要监控程序发现的够快,不可服务时间就会非常少。在节点故障期间,节点本身对集群的影响非常小。
自动节点克隆:在新增节点,或者停机维护时,增量数据或者基础数据不需要人工手动备份提供,Galera Cluster会自动拉取在线节点数据,最终集群会变为一致。
对应用透明:集群的维护,对应用程序是透明的,几乎感觉不到。
以下是缺点
目前的复制仅仅支持InnoDB存储引擎
DELETE操作不支持没有主键的表
在多主环境下LOCK/UNLOCK TABLES不支持以及锁函数GET_LOCK(), RELEASE_LOCK()
由于集群是乐观的并发控制,事务commit可能在该阶段中止。
整个集群的写入吞吐量是由最弱的节点限制,如果有一个节点变得缓慢,那么整个集群将是缓慢的。为了稳定的高性能要求,所有的节点应使用统一的硬件。
LSM Tree,主要应用于nessDB、leveldb、hbase
核心思想的核心就是放弃部分读能力,换取写入的最大化能力。它假设假定内存足够大,因此不需要每次有数据更新就必须将数据写入到磁盘中,而可以先将最新的数据驻留在内存中,等到积累到最后多之后,再使用归并排序的方式将内存内的数据合并追加到磁盘队尾。(使用归并排序是要因为带排序树都是有序树)
LSM具有批量特性,存储延迟。B树在insert的时候可能会造成分裂,可能会造成随机读写。而LSM将多次单页随机写,变成一次多页随机写,复用了磁盘寻道时间,极大提升效率。
LSM Tree放弃磁盘读性能来换取写的顺序性。
一般会使用Bloom Filter来优化LSM。当将内存中的数据与磁盘数据合并的时候,先要判断数据是否有重复,如果不用Bloom Filter就需要在磁盘上一层层地找,而使用了之后就会降低搜索代价。
多线程
synchronized、CAS
Collections
支持高并发的数据结构,如ConcurrentHashMap
基于AQS实现的锁、信号量、计数器原理
Runnable与Callable的区别
线程池
作用
减少在创建和销毁线程上所花的时间以及系统资源的开销 。
当前任务与主线程隔离,能实现和主线程的异步执行,特别是很多可以分开重复执行的任务。
阻塞队列
threadlocal
框架
Spring
IOC/DI
Core、Beans、Context、Expression Language
JDBC、ORM、OXM、JMS、Transaction
AOP
Web
Test
@Autowired原理
工厂模式
反射
自动配置
@ConfigurationProperties(prefix = "hello"):读取以hello为开头的配置,属性类使用
@Configuration:指名当前类为配置类
@EnableConfigurationProperties(Properties):指名配置属性类
@ConditionalOnClass(Condition.class):条件类,只有Condition.class存在,当前配置类才生效
Spring Boot在spring.factories配置了很多全限定名的配置类。
Netty架构
Redis
核心原理
常用数据类型
String:二进制安全,可以存任何数据,比如序列化的图片。最大长度位512M.
Hash:是KV对集合,本质是String类型的KV映射,适合存储对象。
List:简单字符串链表,可以在left、right两边插入,本质是双向链表。缓冲区也是用这个实现。
Set:String类型的无序集合,内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。
zset:有序集合,每个元素会关联一个double类型的score,然后根据score进行排序。注意:元素不能重复,但是score是可以重复的。使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score.
pub/sub:在Redis中,你可以设定对某一个key值进行消息发布及消息订阅,当一个key值上进行了消息发布后,所有订阅它的客户端都会收到相应的消息。
持久化
RDB:一种是手动执行持久化命令来持久化快照;另一种是在配置文件中配置策略,来自动持久化。持久化命令有save、bgsave两种,bgsave会调用fork命令,产生子进程来进行持久化,而父进程继续处理数据,但是持久化的快照是fork那一刻的快照,因此这种策略可能会丢失一部分数据。特点:每次都记录所有数据,恢复快,子进程不影响父进程性能。
AOF:append only file,将每条操作命令都记录到appendonly.aof文件中,但是不会立马写入硬盘,我们可以配置always(每有一个命令,都同步)、everysec(每秒同步一次)、no(没30秒同步一次)。往往everysec就够了。aof数据损失要比RDB小。特点:有序记录所有操作,数据丢失更少,会对操作做压缩优化,bgrewriteaof也会fork子进程,不影响父进程性能
事务
Transactions:不是严格的ACID的事务,但是这个Transactions还是提供了基本的命令打包执行的功能(在服务器不出问题的情况下,可以保证一连串的命令是顺序在一起执行的,中间有会有其它客户端命令***来执行)。
Redis还提供了一个Watch功能,你可以对一个key进行Watch,然后再执行Transactions,在这过程中,如果这个Watched的值进行了修改,那么这个Transactions会发现并拒绝执行。
KafKA
topic
broker
partition
consumer
producer
stream
存储机制
网络模型
注意:partition之间是无序的
消息队列的生产者消费者中消费者没有收到消息怎么办,消息有顺序比如1.2.3但是收到的却是1.3.2怎么办?消息发过来的过程中损坏或者出错怎么办
Spring security
拦截器栈
@PreAuthorize
@PostAuthorize
支持Expression Language
jvm原理
内存模型
垃圾收集器,CMS与G1是重点
垃圾收集算法
标记-清除(CMS)容易产生碎片,当碎片太多会提前触发Full GC
复制(年轻代基本用这个算法)会浪费一半的可能感觉
标记-整理(serial Old、Parallel Old)
Serial:采用单线程stop-the-world的方式进行收集。当内存不足时,串行GC设置停顿标识,待所有线程都进入安全点(Safepoint)时,应用线程暂停,串行GC开始工作,采用单线程方式回收空间并整理内存。串行收集器特别适合堆内存不高、单核甚至双核CPU的场合。
ParNew
Parallel Scavenge
CMS:
初始标记(stop of world)
并行标记、预清理
重新标记(stop of world)
并行清理
重置
G1:将堆分成很多region,可以同时堆年轻代与老年代进行收集
初始标记(stop of world):初始标记(Initial Mark)负责标记所有能被直接可达的根对象(原生栈对象、全局对象、JNI对象)
并行标记:
重新标记(stop of world):
清理(stop of world):
重置:
Pause Prediction Model(停顿预测模型)
核心代码MAX2(seq->davg() + sigma() seq->dsd(),seq->davg() confidence_factor(seq->num()));其中seq->davg()表示衰减均值,sigma()返回一个系数,表示信赖度,dsd表示衰减标准偏差,confidence_factor表示可信度相关系数。
gc触发条件
从年轻代分区拷贝存活对象时,无法找到可用的空闲分区,会触发Minor GC
从老年代分区转移存活对象时,无法找到可用的空闲分区,会触发Major GC
分配巨型对象时在老年代无法找到足够的连续分区,会触发Major GC
可达性分析:通过检查一块内存空间能否被root达到,来判断是否对其进行回收。
jdk不同版本新增的部分特性
1.7
switch语句中支持使用字符串了
try catch支持捕获多个异常,竖线分割异常即可
try块中使用的资源可以不用手动在finally中关闭
支持 List tempList = new ArrayList<>()的声明方式,其实是泛型实例化类型自动推断。
提供自定义关闭类的接口,实现AutoCloseable ,就可以在类销毁的时候自动关闭一些资源。
1.8
接口的默认方法
Lambda 表达式,@FunctionInterface注解
允许你使用 :: 关键字来传递方法或者构造函数引用
在包java.time下包含了一组全新的时间日期API。
jvm调优
VisualVM:JDK自带JVM可视化工具,能过对内存、gc、cpu、thread、class、变量等等信息进行可视化。
类加载
类加载器
Bootstrap ClassLoader:由c语言实现,用来加载JVM自身工作需要的类。这个类不在双亲委派体系中。
ExtClassLoader:用于加载java\jre\lib\ext目录下的jar
AppClassLoader:父类加载器为ExtClassLoader,会加载classpath下所有的类。
类加载方式
隐士加载:不通过代码里面调用ClassLoader来加载需要的类,而是通过JVM来自动加载需要的类到内存。
显示加载:通过调用ClassLoader.loadClass或Class.forName(),或自己实现ClassLoader的findClass方法来加载类。
自定义ClassLoader:父类加载器总是getSystemClassLoader()方法获取到的ClassLoader。因为不管调用哪个父类加载器,创建对象最终都会调用getSystemClassLoader作为父加载器,在一般应用中getSystemClassLoader会获取AppClassLoader,但在tomcat中getSystemClassLoader()会返回StandardClassLoader。
流程:加载(调用findClass方法)->验证(各种检查)->准备(将静态属性用零值初始化)->解析(将符号引用替换成直接引用)->初始化(调用clinit方法)
双亲委派:记载一个类的时候,会先递归检查父类是否加载过,避免重加载。如果发生重加载,那原来的类与新加载的类 stanceof判断是false。
热部署:利用判断两个class是否是同一个,需要校验类名与类加载器是否一样的原理。热部署的类都是用完释放,每次使用都先new一个classLoader,然后用这个classLoader来加载这个类,这样生成的类虽然与之前的名称一样,但是实际上不是同一个。
javac编译器
读取源码
词法分析,从原文件的字符开始,按照java语法规范依次找出package、import、类定义、属性、方法、关键词等。
语法分析,形成一颗符合java规范的抽象语法树,它能将主要词法用一个结构化的形式去表达。
语义分析,将一些难懂的、复杂的语法转化为更加简单的语法。比如添加解除语法糖、默认构造方法、检查语句是否可达、检查变量类型是否匹配、检查checked exception 是否捕捉或抛出.
通过字节码生成器生成字节码
interface可以多继承;class只能单继承,多实现
String
无法被继承,因为它是final class,其被设计成final主要出于以下考虑:
字符串常量池的需要。字符串常量池的诞生是为了提升效率和减少内存分配。字符串重复的可能性很高,并且其不可变性能够方便常量池优化。
安全性考虑。正因为使用字符串的场景如此之多,所以设计成不可变可以有效的防止字符串被有意或者无意的篡改。(但是通过反射还是可以***的)
作为HashMap、HashTable等hash型数据key的必要。因为不可变的设计,jvm底层很容易在缓存String对象的时候缓存其hashcode,这样在执行效率上会大大提升。
String.equals()是的实现是逐字符比较两个String对象的char,而==是比较引用。
String.intern()会获取在字符串常量池中的字符串对象,如果该字符串不在常量池中,那会将它假如常量池,然后再返回该对象。因此如果连个String的值一样,那么调用intern()方法返回的都是其再常量池中的对象,而常量池中一样的字符串只有一个对象,因此使用==比较也是true。
int的范围-2^32~2^32-1
序列化的底层实现
java深拷贝
实现Cloneable接口的clone方法
通过序列化实现
设计模式
单例
双重检查
静态内部类
枚举(jdk1.8之后支持)
观察者模式
装饰者模式:jdk中输入输出流用到了该模式
适配器模式:jdk中Reader、writer用到了该模式
***模式
静态***
JDK动态***
Cglib到动态***
生产者消费者模式
工厂模式
项目管理与运维工具
git+Jenkins
maven
K8S
pod:Pod是所有业务类型的基础,所有的容器均在Pod中运行,它是一个或多个容器的组合。每一个Pod都会被指派一个唯一的Ip地址,在Pod中的每一个容器共享网络命名空间,包括Ip地址和网络端口。Pod能够被指定共享存储卷的集合,在Pod中所有的容器能够访问共享存储卷,允许这些容器共享数据。
kubelet:kubelet负责管理pods和它们上面的容器,images镜像、volumes、etc。
kube-proxy:为Service提供cluster内部的服务发现和负载均衡;
etcd:所有master的持续状态都存在etcd的一个实例中。这可以很好地存储配置数据。因为有watch(观察者)的支持,各部件协调中的改变可以很快被察觉。
一旦一个Pod被创建,系统就会不停的监控Pod的健康情况以及Pod所在主机的健康情况,如果这个Pod因为软件原因挂掉了或者所在的机器挂掉了,replication controller 会自动在一个健康的机器上创建一个一摸一样的Pod,来维持原来的Pod冗余状态不变,一个应用的多个Pod可以共享一个机器。
ingress,用于负载均衡
docker
docker与虚拟机的区别
数据结构
平衡二叉树AVL
高度log(n)
插入时间复杂度log(n)
红黑树
插入时间复杂度log(n)
查找时间复杂度log(n)
在查找是,红黑树虽然复杂度也是log(n),但是从效率上比要略低于AVL。但是其优势在于插入元素的时候,不会像AVL那样频繁地旋转。
B+Tree:只有叶子节点存值,非叶子节点只存key和child,因此同样大小的物理页上能存放更多的节点。每一层的节点数量越多,意味着层次越少,也就意味着IO次数越少,因此非常适合数据库以及文件系统。
大根堆:采用数组存储树,是一个完全树。先插入到数组最后的位置上,然后采用上浮的思想,将该元素与比它小的父元素调换,直到parent>target,浮到root;然后将root与未排序的最后一个元素交换位置;重复以上步骤,直到所有元素都有序。插入如查找的复杂度都是log(n)。
优先队列PriorityQueue,Java中使用小根堆实现,非线程安全。
优先阻塞队列PriorityBlockQueue,线程安全。
算法
快排
时间复杂度O(nlog(n))
空间复杂度O(log(n))
堆排序
时间复杂度O(nlog(n))
空间复杂度O(1)
归并排序
时间复杂度O(nlog(n))
空间复杂度O(n)
跳表
时间复杂度O(log(n))
空间复杂度O(2n)
高度O(log(n))
分布式
cap理论
可用性
一致性
分区容忍性:对网络断开的容忍度,有点像鲁棒性
拜占庭将军问题
问题描述
拜占庭帝国即中世纪的土耳其,拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功***。任何单个邻邦***的都会失败,同时也有可能自身被其他9个邻邦***。拜占庭帝***御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么***者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。这个问题的本质是要达成一致的共识。
Raft 算法
有leader、follower、candidate
选主流程:
在最初,还没有一个主节点的时候,所有节点的身份都是Follower。每一个节点都有自己的计时器,当计时达到了超时时间(Election Timeout),该节点会转变为Candidate。
成为Candidate的节点,会首先给自己投票,然后向集群中其他所有的节点发起请求,要求大家都给自己投票。
其他收到投票请求且还未投票的Follower节点会向发起者投票,发起者收到反馈通知后,票数增加。
当得票数超过了集群节点数量的一半,该节点晋升为Leader节点。Leader节点会立刻向其他节点发出通知,告诉大家自己才是老大。收到通知的节点全部变为Follower,并且各自的计时器清零。
注意:每个节点的超时时间都是不一样的。比如A节点的超时时间是3秒,B节点的超时时间是5秒,C节点的超时时间是4秒。这样一来,A节点将会最先发起投票请求,而不是所有节点同时发起。如果所有节点同时发起投票,必然会导致大家的票数差不多,形成僵局,谁也当不成老大。一旦Leader节点挂掉,发不出通知,那么计时达到了超时时间的Follower节点会转变为Candidate节点,发起选主投票,周而复始。
同步流程
由客户端提交数据到Leader节点。
由Leader节点把数据复制到集群内所有的Follower节点。如果一次复制失败,会不断进行重试。
Follower节点们接收到复制的数据,会反馈给Leader节点。
如果Leader节点接收到超过半数的Follower反馈,表明复制成功。于是提交自己的数据,并通知客户端数据提交成功。
由Leader节点通知集群内所有的Follower节点提交数据,从而完成数据同步流程。
zookeeper,参考博客1,参考博客2
leader:复制进行投票的发起和决议,更新系统状态。
follower:接收client的请求并返回结果,在选主过程中进行投票。
observer:接收client连接,并将请求转发给leader节点。在不参加投票,只是同步leader状态。
client:请求发起方。
Zab(Zookeeper Atomic Broadcast)协议,有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。
选主:有两种算法:1. basic paxos;2. fast paxos(默认)
basicpaxos流程
当前Server担任***线程,其主要功能是对投票结果进行统计,并选出推荐的Server。
***线程首先向所有Server发起一次询问(包括自己);
线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次的投票记录表中;
收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;
线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被***出来。
同步流程
leader等待server连接;
Follower连接leader,将最大的zxid发送给leader;
Leader根据follower的zxid确定同步点;
完成同步后通知follower 已经成为uptodate状态;
Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。
事务顺序一致性:采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。
server的状态
LOOKING:当前Server不知道leader是谁,正在搜寻
LEADING:当前Server即为***出来的leader
FOLLOWING:leader已经***出来,当前Server与之同步
文件系统:zookeeper的通知机制、分布式锁、队列管理、配置管理都是基于文件系统的。文件系统中有一下几种节点:
PERSISTENT-持久化目录节点,客户端与zookeeper断开连接后,该节点依旧存在 。
PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点,客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号。
EPHEMERAL-临时目录节点,客户端与zookeeper断开连接后,该节点被删除。
EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点,客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号。
通知机制:客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
配置管理:把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中。
分布式锁:有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
独占锁:将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。用完删除掉自己创建的distribute_lock 节点就释放出锁。
控制时序锁:/distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除。
队列管理,分为同步队列、非同步队列
同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。 在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。
队列按照 FIFO 方式进行入队和出队操作。和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
数据复制的好处
容错:一个节点出错,不致于让整个系统停止工作,别的节点可以接管它的工作;
提高系统的扩展能力 :把负载分布到多个节点上,或者增加节点来提高系统的负载能力;
提高性能:让客户端本地访问就近的节点,提高用户访问速度。
数据复制集群系统分下面两种:
写主(WriteMaster) :对数据的修改提交给指定的节点。读无此限制,可以读取任何一个节点。这种情况下客户端需要对读与写进行区别,俗称读写分离;
写任意(Write Any):对数据的修改可提交给任意的节点,跟读一样。这种情况下,客户端对集群节点的角色与变化透明。
Broker模式
主要有这6个类:Client,Server,Client_Proxy,Server_Proxy,Broker,Bridge。
Server:就是我们根据业务写的服务。
Client:请求发起方,Client发送请求到Broker,并从Broker上接收响应或异常。Client和Server只是逻辑上相关而已,实际上Client并不知道Server的确切位置。
Broker:成消息转发器。Broker也负责一些控制和管理操作。它能够定位服务端的位置,若发生异常,能够将异常捕获传给Client。Broker需要提供注册服务的接口给Server。
Client_Proxy:连系Client和Broker,这一层保证了通讯的透明性,使Client调用远程服务就像调用本地的服务一样。
Server_Proxy:与Client_Proxy相对应的,它接受请求,解包消息,解析出参数并调用服务的实现接口。
Bridge:Bridge用来连接各个Broker,一般这个组件是可选的。
一致性hash算法原理
微服务
Spring cloud
网关:zuul
分布式\版本化配置 config
服务注册和发现:Eureka,配置时需要注意多久刷新列表一次,多久监测心跳等。
service-to-service 调用
负载均衡:Ribbon;在生成RestTemplate的bean时,通过@LoadBalanced注解可以使得RestTemplate的调用
断路器:Hystrix
监控:spring admin。在启动类上加@EnableAdminServer注解。
java web
servlet工作原理
创建:如果load-on-startup>0,那就会在Context容器启动的时候实例化。1、Wrapper.loadServlet获取servletClass。2、传给InstanceManager创建对象。
初始化:即调用Servlet的init方法
tomcat工作原理,好文,强推
service,一个server有多个service,一个service有一个container与多个connector
connector,负责接受请求,并将请求封装成request,同时创建repsonse对象传给container。
container
engine
host,一个端口一个,或tomcat上面一个服务一个
context,管理多个wrapper,是servlet的运行环境
wrapper,一个servlet一个
linux
系统结构,讲得很好,强推
硬链接与软连接
硬链接:数据节点通过引用计数的方式来对指向它的硬链接计数,当计数为0就删除。
软连接:我们可以把它看成是快捷方式,它只是记录了某个文件的硬链接的路径,如果我们把源文件删除,再重新创建一个相同名字的文件,那么软连接指向的就是新创建的文件。
虚拟文件系统(VFS):文件系统是有很多实现的,比如ext2、ext3、FAT等等,而VFS则是存在于应用程序与文件系统中间,它封装了open、close、read、write等等操作文件系统的接口,为应用程序屏蔽掉不同文件系统之间的差异。
VFS数据结构
其它
bitmap,大文件交集
Elasticsearch索引原理
从内存到屏幕经历了啥
高并发场景的限流,你怎么来确定限流限多少,模拟场景和实际场景有区别怎么解决,
EMC面试
说一下redis与kafka,redis持久化策略
git中rebase与merge区别
docker底层原理,依赖操作系统的什么
ls -l | grep xxx的执行过程,尽可能的细,是多进程还是单进程?
两个有序数组求中位数
算法 3Sum、中序遍历非递归实现、循环打印矩阵
final、finally、finanize
jvm内存模型
垃圾回收器
Spring特点介绍下
Synchronize与ReentrantLock的区别、使用场景
CAS使用场景
聊了下git+jekins+K8S+docker实现自动化部署
innodb原理,使用场景,与MYISAM在场景上的区别
weakReference、softReference等
Hbase的原理,LSM Tree
Linux中,哪种进程可以使用管道
美团
权限模型
介绍下线程池,阻塞队列的用法,队列真的吗?
说一下redis
kafka存储模型与网络模型
zookeeper与redis实现分布式锁
乐观锁与悲观锁
算法:有n个人,给你ai与aj的身高关系,如ai比aj高,进行身高排序,如果条件不满足,则输出“不满足”
Spring boot的特性
有什么问题,欢迎留言沟通,在这里也祝大家都能找到一个合适的工作~
特别声明:本文素材来源于网络,仅作为分享学习之用,如有侵权,请联系删除!
Java程序员11面阿里,错失offer,期间还面了EMC+网易+美团......
标签:损坏 分区 时间复杂度 HERE 声明 用户访问 共享 需求 钓鱼
原文地址:https://blog.51cto.com/14751386/2478565