标签:check 介绍 http 计算 csv 字典 imp row 算法
""" K-近邻算法(KNN):如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别) K取值问题:取小容易受异常值影响,取太大预测准确率不好 性能问题:时间复杂度很高,计算量太大,适用小数据场景,于几千~几万样本 """
from sklearn.neighbors import KNeighborsClassifier import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler def knncls(): """K-近邻预测用户签到位置,数据来源:https://www.kaggle.com/c/facebook-v-predicting-check-ins/data""" # 读取数据 data = pd.read_csv(r"E:\testdata\xxxxx.csv") # 处理数据 # 1.缩小数据,查询数据筛选 data = data.query("x>1.0 & x<1.25 & y>2.5 & y<2.75") # 2.处理时间数据,将时间戳转换成日期格式,unit转换单位s time_value = pd.to_datetime(data[‘time‘], unit=‘s‘) # 3.把日期格式转换成字典格式 time_value = pd.DatetimeIndex(time_value) # 4.构造一些特征 data[‘day‘] = time_value.day data[‘hour‘] = time_value.hour data[‘weekday‘] = time_value.weekday # 5.把时间戳特征删除 data = data.drop([‘time‘], axis=1) # 6.把签到数少于n个目标位置删除 place_count = data.groupby(‘place_id‘).count() tf = place_count[place_count.row_id>3].reset_index() data = data[data[‘place_id‘].isin(tf.place_id)] # 7.取出数据当做的特征值(x)和目标值(y) y = data[‘place_id‘] x = data.drop([‘place_id‘], axis=1) # 8.将数据分割成训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) # 特征工程(标准化) std = StandardScaler() # 对训练集和测试集的特征值进行标准化 x_train = std.fit_transform(x_train) x_test = std.transform(x_test) # 进行算法流程,n_neighbors取多少个最近邻样本进行类别统计 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(x_train, y_train) # 将测试集特征值传入,得出预测结果 y_predict = knn.predict(x_test) # 得出预测准确率 score = knn.score(x_test, y_test)
标签:check 介绍 http 计算 csv 字典 imp row 算法
原文地址:https://www.cnblogs.com/kogmaw/p/12571659.html