码迷,mamicode.com
首页 > 编程语言 > 详细

第五节 算法的分类介绍和数据集的划分

时间:2020-03-26 01:37:29      阅读:103      评论:0      收藏:0      [点我收藏+]

标签:cti   分类   测试   模块   pre   学习   逻辑   dataset   set   

"""
机器学习算法分类:
    监督学习(有目标值)
        分类(目标值是离散型数据):K-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
        回归(目标值是连续型数据):线性回归、岭回归
    无监督学习(无目标值):聚类 K-means
机器学习一般会把数据集划分为训练集(3/4)和测试集(1/4),可以使用sklearn中的train_test_split模块进行自动分类
"""

# 使用sklearn自带的鸢尾花数据集进行数据划分
from sklearn.datasets import load_iris  # 鸢尾花模块
from sklearn.model_selection import train_test_split  # 选择测试集模块

li = load_iris()
# li.data特征集,li.target目标集,test_size测试集占比
print(li.data)
print(li.target)
x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)

print("训练集的特征值和目标值:", x_train, x_test)
print("测试集的特征值和目标值:", y_train, y_test)

 

第五节 算法的分类介绍和数据集的划分

标签:cti   分类   测试   模块   pre   学习   逻辑   dataset   set   

原文地址:https://www.cnblogs.com/kogmaw/p/12571649.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!