码迷,mamicode.com
首页 > 编程语言 > 详细

Python 进行 NBA 比赛数据分析

时间:2020-03-29 12:46:58      阅读:106      评论:0      收藏:0      [点我收藏+]

标签:利用   图片   exp   model   main   ref   ring   val   随机   

 

Basketball Reference.com 数据源地址

http://labfile.oss.aliyuncs.com/courses/782/data.zip数据下载地址

用到的三张表

Team Per Game Stats

Opponent Per Game Stats

Miscellaneous Stats

 

 

整体思路,根据输赢按公式赋分,赢了且是主场加分

第一个函数,首先初始化一下数据,去除一些无关数据并将这三个表格通过Team属性列进行连接

第二个函数,获取每支队伍的Elo Score等级分,最开始给定一个初始值

第三个函数,计算每支球队的Elo等级分,分输赢队伍对每个队伍进行等级赋分

这里借鉴了国际象棋的等级划分制度,Elo 等级划分制度

A 和 B 的当前等级分为 RA?? RB, A 对 B 的胜率期望值为EA,B 对A 的胜率期望值为EB

技术图片

 

 

 技术图片

 

 

 技术图片

 

 

 k值根据不同的分数会发射变化

  • 大于等于2400,K=16
  • 2100~2400 分,K=24
  • 小于等于2100,K=32

第四个函数,调用上面的相关函数,得到最后的elo分值,进行回归分析

此处的iterrows()是对dataframe进行遍历

最后就是预测模型了

import pandas as pd
import math
import csv
import random
import numpy as np
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
base_elo = 1600
team_elos = {}
team_stats = {}
X = []
y = []
#初始化数据,从T,O,M表格中读取数据,取出一些无关数据并将这三个表格通过team树形列进行连接:
#根据每个队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化
def initialize_data(Mstat,Ostat,Tstat):
    new_Mstat = Mstat.drop([Rk,Arena],axis=1)
    new_Ostat = Ostat.drop([Rk,"G",MP],axis=1)
    new_Tstat = Tstat.drop([Rk,"G",MP],axis=1)
    team_stats1 = pd.merge(new_Mstat,new_Ostat,how=left,on=Team)
    team_stats1 = pd.merge(team_stats1,new_Tstat,how=left,on=Team)
    return team_stats1.set_index(Team,inplace=False,drop=True)
def get_elo(team):
    try:
        return team_elos[team]
    except:
        team_elos[team] = base_elo
    return team_elos[team]
def calc_elo(win_team,lose_team):
    winner_rank = get_elo(win_team)
    loser_rank = get_elo(lose_team)
    #根据Logistic Distribution计算 PK 双方(A和B)对各自的胜率期望值计算公式
    rank_diff = winner_rank - loser_rank
    exp = (rank_diff *-1)/400
    odds  = 1/(1+math.pow(10,exp))
    #根据rank界别修改k值
    if winner_rank < 2100:
        k = 32
    elif winner_rank >=2100 and winner_rank <2400:
        k = 24
    else:
        k=16
    #更新rank数值
    new_winner_rank = round(winner_rank+(k*(1-odds)))
    new_loser_rank = round(loser_rank+(k*(0-odds)))
    return new_winner_rank,new_loser_rank
 
#基于统计好的数据,给每只队伍的eloscore计算结果,建立对应15-16年数据集,我们认为主场作战的队伍更有优势,因此会给主场队伍加上100分
def build_dataSet(all_data):
    print("Building data set..")
    X = []
    skip = 0
    for index,row in all_data.iterrows():
        Wteam = row[WTeam]
        Lteam = row[LTeam]
        #获取最初的elo或者每个队伍最初的elo值
        team1_elo = get_elo(Wteam)
        team2_elo = get_elo(Lteam)
        #给主场比赛队伍加上100的elo值
        if row[WLoc] == H:
            team1_elo += 100
        else:
            team2_elo += 100
        #把elo当成评价每个队伍的第一个特征值
        team1_features = [team1_elo]
        team2_features = [team2_elo]
        # 添加我们从basketball reference.com获得的每个队伍的统计信息
        for key,value in team_stats.loc[Wteam].iteritems():
            team1_features.append(value)
        for key,value in team_stats.loc[Lteam].iteritems():
            team2_features.append(value)
        # 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧
        # 并将对应的0/1赋给y值
        if random.random() > 0.5:
            X.append(team1_features+team2_features)
            y.append(0)
        else:
            X.append(team2_features+team1_features)
            y.append(1)
        if skip ==0:
            print(X,X)
            skip = 1
        new_winner_rank,new_loser_rank = calc_elo(Wteam,Lteam)
        team_elos[Wteam] = new_winner_rank
        team_elos[Lteam] = new_loser_rank
    return np.nan_to_num(X),y
#最终利用训练好的模型在 16~17 年的常规赛数据中进行预测
def predict_winner(team_1, team_2, model):
    features = []
    # team 1,客场队伍
    features.append(get_elo(team_1))
    for key, value in team_stats.loc[team_1].iteritems():
        features.append(value)
    # team 2,主场队伍
    features.append(get_elo(team_2) + 100)
    for key, value in team_stats.loc[team_2].iteritems():
        features.append(value)
    features = np.nan_to_num(features)
    return model.predict_proba([features])
#最终在 main 函数中调用这些数据处理函数,使用 sklearn 的Logistic Regression方法建立回归模型
if __name__==__main__:
    folder = data
    Mstat = pd.read_csv(folder + /15-16Miscellaneous_Stat.csv)
    Ostat = pd.read_csv(folder + /15-16Opponent_Per_Game_Stat.csv)
    Tstat = pd.read_csv(folder + /15-16Team_Per_Game_Stat.csv)
    team_stats = initialize_data(Mstat, Ostat, Tstat)
    result_data = pd.read_csv(folder + /2015-2016_result.csv)
    X, y = build_dataSet(result_data)
    #训练网络模型
    print("Fitting on %d game samples.." % len(X))
    model = linear_model.LogisticRegression()
    model.fit(X,y)
    print("Doing cross-validation..")
    cross_val_score(model,X,y,cv = 10,scoring=accuracy,n_jobs=-1).mean()
    print(model)
    print(Predicting on new schedule..)
    schedule1617 = pd.read_csv(folder + /16-17Schedule.csv)
    result = []
    for index, row in schedule1617.iterrows():
        team1 = row[Vteam]
        team2 = row[Hteam]
        pred = predict_winner(team1, team2, model)
        prob = pred[0][0]
        if prob > 0.5:
            winner = team1
            loser = team2
            result.append([winner, loser, prob])
        else:
            winner = team2
            loser = team1
            result.append([winner, loser, 1 - prob])
    with open(16-17Result.csv, w) as f:
        writer = csv.writer(f)
        writer.writerow([win, lose, probability])
        writer.writerows(result)
        print(done.)

代码部分转载自https://blog.csdn.net/u010824946/java/article/details/89441145

Python 进行 NBA 比赛数据分析

标签:利用   图片   exp   model   main   ref   ring   val   随机   

原文地址:https://www.cnblogs.com/dieyingmanwu/p/12591428.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!