标签:相交 线性 方便 级别 解析 效率 col count color
什么是贪心算法呢?贪心算法可以认为是动态规划算法的一个特例,相比动态规划,使用贪心算法需要满足更多的条件(贪心选择性质),但是效率比动态规划要高。
比如说一个算法问题使用暴力解法需要指数级时间,如果能使用动态规划消除重叠子问题,就可以降到多项式级别的时间,如果满足贪心选择性质,那么可以进一步降低时间复杂度,达到线性级别的。
什么是贪心选择性质呢,简单说就是:每一步都做出一个局部最优的选择,最终的结果就是全局最优。注意哦,这是一种特殊性质,其实只有一部分问题拥有这个性质。
比如你面前放着 100 张人民币,你只能拿十张,怎么才能拿最多的面额?显然每次选择剩下钞票中面值最大的一张,最后你的选择一定是最优的。
然而,大部分问题明显不具有贪心选择性质。比如打斗地主,对手出对儿三,按照贪心策略,你应该出尽可能小的牌刚好压制住对方,但现实情况我们甚至可能会出王炸。这种情况就不能用贪心算法,而得使用动态规划解决,参见前文「动态规划解决博弈问题」。
给你很多形如 [start, end]
的闭区间,请你设计一个算法,算出这些区间中最多有几个互不相交的区间。
int intervalSchedule(int[][] intvs) {}
举个例子,intvs = [[1,3], [2,4], [3,6]]
,这些区间最多有 2 个区间互不相交,即 [[1,3], [3,6]]
,你的算法应该返回 2。注意边界相同并不算相交。
这个问题在生活中的应用广泛,比如你今天有好几个活动,每个活动都可以用区间 [start, end]
表示开始和结束的时间,请问你今天**最多能参加几个活动呢?**显然你一个人不能同时参加两个活动,所以说这个问题就是求这些时间区间的最大不相交子集。
这个问题有许多看起来不错的贪心思路,却都不能得到正确答案。比如说:
也许我们可以每次选择可选区间中开始最早的那个?但是可能存在某些区间开始很早,但是很长,使得我们错误地错过了一些短的区间。或者我们每次选择可选区间中最短的那个?或者选择出现冲突最少的那个区间?这些方案都能很容易举出反例,不是正确的方案。
正确的思路其实很简单,可以分为以下三步: 代码很清晰。
把这个思路实现成算法的话,可以按每个区间的 end
数值升序排序,因为这样处理之后实现步骤 1 和步骤 2 都方便很多:
public int intervalSchedule(int[][] intvs) { if (intvs.length == 0) return 0; // 按 end 升序排序 Arrays.sort(intvs, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[1] - b[1]; } }); // 至少有一个区间不相交 int count = 1; // 排序后,第一个区间就是 x int x_end = intvs[0][1]; for (int[] interval : intvs) { int start = interval[0]; if (start >= x_end) { // 找到下一个选择的区间了 count++; x_end = interval[1]; } } return count; }
标签:相交 线性 方便 级别 解析 效率 col count color
原文地址:https://www.cnblogs.com/fanguangdexiaoyuer/p/12635266.html