标签:port exce 除了 import 名称 inf load alt 获取
1. 稀疏矩阵的建立:coo_matrix()
from scipy.sparse import coo_matrix # 建立稀疏矩阵 data = [1,2,3,4] row = [3,6,8,2] col = [0,7,4,9] c = coo_matrix((data,(row,col)),shape=(10,10)) #构建10*10的稀疏矩阵,其中不为0的值和位置在第一个参数 print(c)
2. 稀疏矩阵转化为密集矩阵:todense()
d = c.todense() print(d)
3. 将一个0值很多的矩阵转化为稀疏矩阵
e = coo_matrix(d) #将一个0值很多的矩阵转为稀疏矩阵 print(e)
4. save:类似于matlab中的.mat格式,python也可以保存参数数据,除了保存成csv,json,excel等之外,个人觉得matlab的.mat格式真的很强,啥都可以直接保存~~
import numpy as np # numpy.save(arg_1,arg_2),arg_1是文件名,arg_2是要保存的数组
aa = np.array(d) print(aa) # save np.save(‘test_save_1.npy‘, aa) #保存一个数组 np.savez(‘test_save_2‘, aa=aa, d=d) #保存多个数组,其中稀疏矩阵可以直接保存
5. load:加载参数数据
#load a_ = np.load(‘test_save_1.npy‘) print(a_)
dt = np.load(‘test_save_2.npz‘) #npz数据加载后是一个字典格式数据 print(dt) print(dt[‘aa‘]) print(dt[‘d‘]) #获取其中的参数值,类似于字典形式获取
6. 获取npz数据的参数名称
#获取参数名称 p_name =list(dt.keys()) print(p_name) #获取值 p_value =list(dt.values()) print(p_value)
#
参考:
https://blog.csdn.net/littlehaes/article/details/103523512
https://www.cnblogs.com/Yiutto/p/5827775.html
标签:port exce 除了 import 名称 inf load alt 获取
原文地址:https://www.cnblogs.com/qi-yuan-008/p/12642783.html