标签:com 共享 生成 down 循环 资源 并行 退出 信号量
1. 线程定义
线程是操作系统调度的最小单位
它被包含在进程之中,是进程中的实际运作单位
进程本身是无法自己执行的,要操作cpu,必须创建一个线程,线程是一系列指令的集合
线程定义拓展回答内容
1. 线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位
2. 一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务
3. 无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行
4. 进程本身是无法自己执行的,要操作cpu,必须创建一个线程,线程是一系列指令的集合
5. 所有在同一个进程里的线程是共享同一块内存空间的,不同进程间内存空间不同
6. 同一个进程中的各线程可以相互访问资源,线程可以操作同进程中的其他线程,但进程仅能操作子进程
7. 两个进程想通信,必须要通过一个中间代理
8. 对主线程的修改可能回影响其他子线程,对主进程修改不会影响其他进程因为进程间内存相互独立,但是同一进程下的线程共享内存
2. 进程和线程的区别
1、进程包含线程
2、线程共享内存空间
3、进程内存是独立的(不可互相访问)
4、进程可以生成子进程,子进程之间互相不能互相访问(相当于在父级进程克隆两个子进程)
5、在一个进程里面线程之间可以交流。两个进程想通信,必须通过一个中间代理来实现
6、创建新线程很简单,创建新进程需要对其父进程进行克隆。
7、一个线程可以控制或操作同一个进程里面的其它线程。但进程只能操作子进程。
8、父进程可以修改不影响子进程,但不能修改。
9、线程可以帮助应用程序同时做几件事
3. for循环同时启动多个线程
import threading
import time
def sayhi(num): #定义每个线程要运行的函数
print("running on number:%s" %num)
time.sleep(3)
for i in range(50):
t = threading.Thread(target=sayhi,args=(‘t-%s‘%i,))
t.start()
4. t.join(): 实现所有线程都执行结束后再执行主线程
import threading
import time
start_time = time.time()
def sayhi(num): #定义每个线程要运行的函数
print("running on number:%s" %num)
time.sleep(3)
t_objs = [] #将进程实例对象存储在这个列表中
for i in range(50):
t = threading.Thread(target=sayhi,args=(‘t-%s‘%i,))
t.start() #启动一个线程,程序不会阻塞
t_objs.append(t)
print(threading.active_count()) #打印当前活跃进程数量
for t in t_objs: #利用for循环等待上面50个进程全部结束
t.join() #阻塞某个程序
print(threading.current_thread()) #打印执行这个命令进程
print("----------------all threads has finished.....")
print(threading.active_count())
print(‘cost time:‘,time.time() - start_time)
5. setDaemon(): 守护线程,主线程退出时,需要子线程随主线程退出
import threading
import time
start_time = time.time()
def sayhi(num): #定义每个线程要运行的函数
print("running on number:%s" %num)
time.sleep(3)
for i in range(50):
t = threading.Thread(target=sayhi,args=(‘t-%s‘%i,))
t.setDaemon(True) #把当前线程变成守护线程,必须在t.start()前设置
t.start() #启动一个线程,程序不会阻塞
print(‘cost time:‘,time.time() - start_time)
6. GIL全局解释器锁:保证同一时间仅有一个线程对资源有操作权限
作用:在一个进程内,同一时刻只能有一个线程执行
说明:python多线程中GIL锁只是在CPU操作时(如:计算)才是串行的,其他都是并行的,所以比串行快很多
1)为了解决不同线程同时访问同一资源时,数据保护问题,而产生了GIL
2)GIL在解释器的层面限制了程序在同一时间只有一个线程被CPU实际执行,而不管你的程序里实际开了多少条线程
3)为了解决这个问题,CPython自己定义了一个全局解释器锁,同一时间仅仅有一个线程可以拿到这个数据
4)python之所以会产生这种不好的状况是因为python启用一个线程是调用操作系统原生线程,就是C接口
5)但是这仅仅是CPython这个版本的问题,在PyPy,中就没有这种缺陷
7. 线程锁
1)当一个线程对某个资源进行CPU计算的操作时加一个线程锁,只有当前线程计算完成主动释放锁,其他线程才能对其操作
2)这样就可以防止还未计算完成,释放GIL锁后其他线程对这个资源操作导致混乱问题
用户锁使用举例
import time
import threading
lock = threading.Lock() #1 生成全局锁
def addNum():
global num #2 在每个线程中都获取这个全局变量
print(‘--get num:‘,num )
time.sleep(1)
lock.acquire() #3 修改数据前加锁
num -= 1 #4 对此公共变量进行-1操作
lock.release() #5 修改后释放
8. Semaphore(信号量)
1. 互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据
2. 比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去
3. 作用就是同一时刻允许运行的线程数量
9. 线程池实现并发
import requests
from concurrent.futures import ThreadPoolExecutor
def fetch_request(url):
result = requests.get(url)
print(result.text)
url_list = [
‘https://www.baidu.com‘,
‘https://www.google.com/‘, #google页面会卡住,知道页面超时后这个进程才结束
‘http://dig.chouti.com/‘, #chouti页面内容会直接返回,不会等待Google页面的返回
]
pool = ThreadPoolExecutor(10) # 创建一个线程池,最多开10个线程
for url in url_list:
pool.submit(fetch_request,url) # 去线程池中获取一个线程,线程去执行fetch_request方法
pool.shutdown(True) # 主线程自己关闭,让子线程自己拿任务执行
标签:com 共享 生成 down 循环 资源 并行 退出 信号量
原文地址:https://www.cnblogs.com/lihouqi/p/12664234.html