标签:https int names std efi 区间 ace turn ceil
我看到这个题的第一反应是做单调栈:
\(p[i]>=h[j]+\sqrt{|i-j|}-h[i]\)
就\(sqrt\)这函数吧,也是单调的,性质应该和直线差不多,所以单调队列维护交点单调的若干条曲线。
求交点可以用二分求,时间复杂度是\(O(n~log~n)\)
有理有据的做法是分块。
考虑\(\sqrt{|i-j|}\)只有\(2\sqrt n\)种取值,且对于每个每个取值,合法的\(j\)在一个区间里,预处理\(ST\)表以快速查询区间最大值最小值。
时间复杂度:\(O(n\sqrt n + n~log~n)\)
Code:
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, _b = y; i <= _b; i ++)
#define ff(i, x, y) for(int i = x, _b = y; i < _b; i ++)
#define fd(i, x, y) for(int i = x, _b = y; i >= _b; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std;
const int N = 1e5 + 5;
int n, h[N];
struct P {
ll x, y;
};
#define db long double
ll jd(P a, P b) {
ll as = 1e18;
for(ll l = b.x, r = 1e18; l <= r; ) {
ll m = l + r >> 1;
db v1 = a.y + sqrt(m - a.x), v2 = b.y + sqrt(m - b.x);
if(v1 < v2) as = m, r = m - 1; else l = m + 1;
}
return as;
}
ll jd2(P a, P b) {
ll as = -1e18;
for(ll l = -1e18, r = b.x; l <= r; ) {
ll m = l + r >> 1;
db v1 = a.y + sqrt(a.x - m), v2 = b.y + sqrt(b.x - m);
if(v1 < v2) as = m, l = m + 1; else r = m - 1;
}
return as;
}
P z[N]; int st, en;
ll p[N];
int main() {
scanf("%d", &n);
fo(i, 1, n) scanf("%d", &h[i]);
st = 1, en = 0;
fo(i, 1, n) {
while(st < en && i >= jd(z[st], z[st + 1])) st ++;
if(st <= en) {
p[i] = max(p[i], z[st].y - h[i] + (ll) ceil(sqrt(i - z[st].x)));
}
if(st <= en && z[en].y >= h[i]) continue;
P a = (P) {i, h[i]};
while(st < en && jd(z[en - 1], z[en]) > jd(z[en], a)) en --;
z[++ en] = a;
}
st = 1, en = 0;
fd(i, n, 1) {
while(st < en && i <= jd2(z[st], z[st + 1])) st ++;
if(st <= en) {
p[i] = max(p[i], z[st].y - h[i] + (ll) ceil(sqrt(z[st].x - i)));
}
if(st <= en && z[en].y >= h[i]) continue;
P a = (P) {i, h[i]};
while(st < en && jd2(z[en - 1], z[en]) < jd2(z[en], a)) en --;
z[++ en] = a;
}
fo(i, 1, n) pp("%lld\n", p[i]);
}
```c
标签:https int names std efi 区间 ace turn ceil
原文地址:https://www.cnblogs.com/coldchair/p/12728520.html