标签:nbsp tis top vector cto res pair int pos
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.
Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
Output: [3,3,5,5,6,7]
Explanation:
?
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Note: You may assume k is always valid, 1 ≤ k ≤ input array‘s size for non-empty array.
Follow up:
难度系数
Hard
解法一:通过STL中的multiset解决,对元素自动排序,且允许有重复值
class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int> res; //允许有重复的元素,如若删除某个元素,则所有相同值的元素均被删除 multiset<int> st; for (int i = 0; i < nums.size(); ++i) { //从开始查找,找到则返回位置,并删除 if (i >= k) st.erase(st.find(nums[i - k])); st.insert(nums[i]); if (i >= k - 1) res.push_back(*st.rbegin()); } return res; } };
解法二:通过优先队列实现,将数值和下标均放到优先队列中,优先队列会对按照数值大小堆排,只需要保证数值在窗口中即可。
class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int> res; priority_queue<pair<int, int>> q;//大顶堆 for (int i = 0; i < nums.size(); ++i) { while (!q.empty() && q.top().second <= i - k) q.pop(); q.push({nums[i], i}); if (i >= k - 1) res.push_back(q.top().first); } return res; } };
解法三:双端队列添加下标,下标对应的元素是由front到back递减的
class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int> res; //双向队列 deque<int> q; for (int i = 0; i < nums.size(); ++i) { //说明此时队列中的元素长度大于k,或者是这个元素,已经不在窗口中了,故而删除 if (!q.empty() && q.front() == i - k) q.pop_front(); //队列中的的下标对应nums中的值由front到back是递减的 while (!q.empty() && nums[q.back()] < nums[i]) q.pop_back(); q.push_back(i); if (i >= k - 1) res.push_back(nums[q.front()]); } return res; } };
标签:nbsp tis top vector cto res pair int pos
原文地址:https://www.cnblogs.com/AntonioSu/p/12748842.html