标签:接口 capacity 超过 hash checked system return 初始 sys
转自:https://www.cnblogs.com/doufuyu/p/10874689.html
1、HashMap概述
在JDK1.8之前,HashMap采用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。
下图中代表jdk1.8之前的hashmap结构,左边部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。
jdk1.8之前hashmap结构图
jdk1.8之前的hashmap都采用上图的结构,都是基于一个数组和多个单链表,hash值冲突的时候,就将对应节点以链表的形式存储。如果在一个链表中查找其中一个节点时,将会花费O(n)的查找时间,会有很大的性能损失。到了jdk1.8,当同一个hash值的节点数不小于8时,不再采用单链表形式存储,而是采用红黑树,如下图所示。
jdk1.8 hashmap结构图
说明:上图很形象的展示了HashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树的引入是为了提高效率。
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。来看具体代码:
//Node是单向链表,它实现了Map.Entry接口 static class Node<k,v> implements Map.Entry<k,v> { final int hash; final K key; V value; Node<k,v> next; //构造函数Hash值 键 值 下一个节点 Node(int hash, K key, V value, Node<k,v> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + = + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } //判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<!--?,?--> e = (Map.Entry<!--?,?-->)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
可以看到,node中包含一个next变量,这个就是链表的关键点,hash结果相同的元素就是通过这个next进行关联的。
//红黑树 static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> { TreeNode<k,v> parent; // 父节点 TreeNode<k,v> left; //左子树 TreeNode<k,v> right;//右子树 TreeNode<k,v> prev; // needed to unlink next upon deletion boolean red; //颜色属性 TreeNode(int hash, K key, V val, Node<k,v> next) { super(hash, key, val, next); } //返回当前节点的根节点 final TreeNode<k,v> root() { for (TreeNode<k,v> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } }
红黑树比链表多了四个变量,parent父节点、left左节点、right右节点、prev上一个同级节点,红黑树内容较多,不在赘述。
transient Node<k,v>[] table;//存储(位桶)的数组
HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。
有了以上3个数据结构,只要有一点数据结构基础的人,都可以大致联想到HashMap的实现了。首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素key的hash值,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时就添加到同一hash值的元素的后面,他们在数组的同一位置,但是形成了链表,所以说数组存放的是链表。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率。
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示可以进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现了序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { // 序列号 private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认的填充因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 当桶(bucket)上的结点数大于这个值时会转成红黑树 static final int TREEIFY_THRESHOLD = 8; // 当桶(bucket)上的结点数小于这个值时树转链表 static final int UNTREEIFY_THRESHOLD = 6; // 桶中结构转化为红黑树对应的table的最小大小 static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组,总是2的幂次倍 transient Node<k,v>[] table; // 存放具体元素的集 transient Set<map.entry<k,v>> entrySet; // 存放元素的个数,注意这个不等于数组的长度。 transient int size; // 每次扩容和更改map结构的计数器 transient int modCount; // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容 int threshold; // 填充因子 final float loadFactor; }
说明:类的数据成员很重要,以上也解释得很详细了。
public HashMap(int initialCapacity, float loadFactor) { // 初始容量不能小于0,否则报错 if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); // 初始容量不能大于最大值,否则为最大值 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // 填充因子不能小于或等于0,不能为非数字 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // 初始化填充因子 this.loadFactor = loadFactor; // 初始化threshold大小 this.threshold = tableSizeFor(initialCapacity); }
说明:tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。
static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
说明:>>> 操作符表示无符号右移,高位取0。
为什么初始化容量都是2的次幂
为什么hashmap的数组初始化大小为2的次方大小时,hashmap的效率最高呢,以2的4次方举例,来解释一下为什么数组大小为2的幂时hashmap访问的性能最高。
如下图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。两组的hashcode均为8和9,但是很明显,当它们和1110“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。
同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!
因此,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。
public HashMap(int initialCapacity) { // 调用HashMap(int, float)型构造函数 this(initialCapacity, DEFAULT_LOAD_FACTOR); }
public HashMap() { // 初始化填充因子 this.loadFactor = DEFAULT_LOAD_FACTOR; }
public HashMap(Map<? extends K, ? extends V> m) { // 初始化填充因子 this.loadFactor = DEFAULT_LOAD_FACTOR; // 将m中的所有元素添加至HashMap中 putMapEntries(m, false); }
说明:putMapEntries(Map<? extends K, ? extends V> m, boolean evict)函数将m的所有元素存入本HashMap实例中。
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { // 判断table是否已经初始化 if (table == null) { // pre-size // 未初始化,s为m的实际元素个数 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // 计算得到的t大于阈值,则初始化阈值 if (t > threshold) threshold = tableSizeFor(t); } // 已初始化,并且m元素个数大于阈值,进行扩容处理 else if (s > threshold) resize(); // 将m中的所有元素添加至HashMap中 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } }
在JDK 1.8中,hash方法如下:
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
(1)首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。
(2)在putVal源码中,我们通过(n-1)&hash获取该对象的键在hashmap中的位置。(其中hash的值就是(1)中获得的值)其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { ... if ((p = tab[i = (n - 1) & hash]) == null)//获取位置 tab[i] = newNode(hash, key, value, null); ... }
tab即是table,n是map集合的容量大小,hash是上面方法的返回值。因为通常声明map集合时不会指定大小,或者初始化的时候就创建一个容量很大的map对象,所以这个通过容量大小与key值进行hash的算法在开始的时候只会对低位进行计算,虽然容量的2进制高位一开始都是0,但是key的2进制高位通常是有值的,因此先在hash方法中将key的hashCode右移16位在与自身异或,使得高位也可以参与hash,更大程度上减少了碰撞率。
下面举例说明下,n为table的长度。
首先说明,HashMap并没有直接提供putVal接口给用户调用,而是提供的put方法,而put方法就是通过putVal来插入元素的。
public V put(K key, V value) { // 对key的hashCode()做hash return putVal(hash(key), key, value, false, true); }
putVal方法执行过程可以通过下图来理解:
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
具体源码如下:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 步骤①:tab为空则创建 // table未初始化或者长度为0,进行扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 步骤②:计算index,并对null做处理 // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中) if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 桶中已经存在元素 else { Node<K,V> e; K k; // 步骤③:节点key存在,直接覆盖value // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 将第一个元素赋值给e,用e来记录 e = p; // 步骤④:判断该链为红黑树 // hash值不相等,即key不相等;为红黑树结点 else if (p instanceof TreeNode) // 放入树中 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 步骤⑤:该链为链表 // 为链表结点 else { // 在链表最末插入结点 for (int binCount = 0; ; ++binCount) { // 到达链表的尾部 if ((e = p.next) == null) { // 在尾部插入新结点 p.next = newNode(hash, key, value, null); // 结点数量达到阈值,转化为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); // 跳出循环 break; } // 判断链表中结点的key值与插入的元素的key值是否相等 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 相等,跳出循环 break; // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表 p = e; } } // 表示在桶中找到key值、hash值与插入元素相等的结点 if (e != null) { // 记录e的value V oldValue = e.value; // onlyIfAbsent为false或者旧值为null if (!onlyIfAbsent || oldValue == null) //用新值替换旧值 e.value = value; // 访问后回调 afterNodeAccess(e); // 返回旧值 return oldValue; } } // 结构性修改 ++modCount; // 步骤⑥:超过最大容量 就扩容 // 实际大小大于阈值则扩容 if (++size > threshold) resize(); // 插入后回调 afterNodeInsertion(evict); return null; }
HashMap的数据存储实现原理
流程:
1. 根据key计算得到key.hash = (h = k.hashCode()) ^ (h >>> 16);
2. 根据key.hash计算得到桶数组的索引index = key.hash & (table.length - 1),这样就找到该key的存放位置了:
① 如果该位置没有数据,用该数据新生成一个节点保存新数据,返回null;
② 如果该位置有数据是一个红黑树,那么执行相应的插入 / 更新操作;
③ 如果该位置有数据是一个链表,分两种情况一是该链表没有这个节点,另一个是该链表上有这个节点,注意这里判断的依据是key.hash是否一样:
如果该链表没有这个节点,那么采用尾插法新增节点保存新数据,返回null;如果该链表已经有这个节点了,那么找到该节点并更新新数据,返回老数据。
注意:
HashMap的put会返回key的上一次保存的数据,比如:
HashMap<String, String> map = new HashMap<String, String>();
System.out.println(map.put("a", "A")); // 打印null
System.out.println(map.put("a", "AA")); // 打印A
System.out.println(map.put("a", "AB")); // 打印AA
说明:HashMap同样并没有直接提供getNode接口给用户调用,而是提供的get方法,而get方法就是通过getNode来取得元素的。
public V get(Object key) { Node<k,v> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; // table已经初始化,长度大于0,根据hash寻找table中的项也不为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 桶中第一项(数组元素)相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个结点 if ((e = first.next) != null) { // 为红黑树结点 if (first instanceof TreeNode) // 在红黑树中查找 return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 否则,在链表中查找 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
②.每次扩展的时候,都是扩展2倍;
③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table;//oldTab指向hash桶数组 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) {//如果oldCap不为空的话,就是hash桶数组不为空 if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值 threshold = Integer.MAX_VALUE; return oldTab;//返回 }//如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组 table = newTab;//将新数组的值复制给旧的hash桶数组 if (oldTab != null) {//进行扩容操作,复制Node对象值到新的hash桶数组 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc if (e.next == null)//如果e后面没有Node结点 newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置 else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//将Node结点的next赋值给next if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0 if (loTail == null)//如果loTail为null loHead = e;//将e结点赋值给loHead else loTail.next = e;//否则将e赋值给loTail.next loTail = e;//然后将e复制给loTail } else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0 if (hiTail == null)//如果hiTail为null hiHead = e;//将e赋值给hiHead else hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next hiTail = e;//将e复制个hiTail } } while ((e = next) != null);//直到e为空 if (loTail != null) {//如果loTail不为空 loTail.next = null;//将loTail.next设置为空 newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处 } if (hiTail != null) {//如果hiTail不为空 hiTail.next = null;//将hiTail.next赋值为空 newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度] } } } } } return newTab; }
标签:接口 capacity 超过 hash checked system return 初始 sys
原文地址:https://www.cnblogs.com/xuningchuanblogs/p/12790334.html