标签:postgresq shm utf8mb4 如何 template 表达式 otc tables code
介绍:
Sharding-JDBC,定位为轻量级Java框架,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。
Sharding-JDBC的核心功能为 数据分片 和 读写分离 ,通过 Sharding-JDBC,应用可以透明的使用 jdbc 访问已经分库分表、读写分离的多个数据源,而不用关心数据源的数量以及数据如何分布。
适用于任何基于 Java 的ORM框架,如: Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
基于任何第三方的数据库连接池,如: DBCP, C3P0, BoneCP, Druid, HikariCP等。
支持任意实现 JDBC 规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。
使用Sharding-Jdbc前需要人工对数据库进行分库分表,在应用程序中加入Sharding-Jdbc的Jar包,应用程序通过Sharding-Jdbc操作分库分表后的数据库和数据表,由于Sharding-Jdbc是对Jdbc驱动的增强,使用Sharding-Jdbc就像使用Jdbc驱动一样,在应用程序中是无需指定具体要操作的分库和分表的。
快速入门:
1.需求说明
人工创建两张表,t_order_1和t_order_2,这两张表是订单表拆分后的表,通过Sharding-Jdbc向订单表插入数据,按照一定的分片规则,主键为奇数的进入t_order_1,另一部分数据进入t_order_2,通过Sharding-Jdbc 查询数据,根据 SQL语句的内容从t_order_1或t_order_2查询数据。
2.创建数据库,创建表
CREATE DATABASE `order_db` CHARACTER SET ‘utf8mb4‘;
USE order_db; DROP TABLE IF EXISTS `t_order_1` ; CREATE TABLE `t_order_1` ( `order_id` BIGINT (20) NOT NULL COMMENT ‘订单id‘, `price` DECIMAL (10, 2) NOT NULL COMMENT ‘订单价格‘, `user_id` BIGINT (20) NOT NULL COMMENT ‘下单用户id‘, `status` VARCHAR (50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT ‘订单状态‘, PRIMARY KEY (`order_id`) USING BTREE ) ENGINE = INNODB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = DYNAMIC ; DROP TABLE IF EXISTS `t_order_2` ; CREATE TABLE `t_order_2` ( `order_id` BIGINT (20) NOT NULL COMMENT ‘订单id‘, `price` DECIMAL (10, 2) NOT NULL COMMENT ‘订单价格‘, `user_id` BIGINT (20) NOT NULL COMMENT ‘下单用户id‘, `status` VARCHAR (50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT ‘订单状态‘, PRIMARY KEY (`order_id`) USING BTREE ) ENGINE = INNODB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = DYNAMIC ;
3.创建springboot工程,引入maven依赖
<!-- sharding-jdbc和SpringBoot整合的Jar包 --> <dependency> <groupId>org.apache.shardingsphere</groupId> <artifactId>sharding-jdbc-spring-boot-starter</artifactId> <version>4.0.0-RC1</version> </dependency>
具体spring boot相关依赖及配置省略.......
4.分片规则配置
#sharding-jdbc分片规则配置
#数据源
spring.shardingsphere.datasource.names = m1
spring.shardingsphere.datasource.m1.type = com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m1.driver-class-name = com.mysql.jdbc.Driver
spring.shardingsphere.datasource.m1.url = jdbc:mysql://localhost:3306/order_db?useUnicode=true
spring.shardingsphere.datasource.m1.username = root
spring.shardingsphere.datasource.m1.password = root
# 指定t_order表的数据分布情况,配置数据节点 m1.t_order_1,m1.t_order_2
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes = m1.t_order_$->{1..2}
# 指定t_order表的主键生成策略为SNOWFLAKE(雪花算法)
spring.shardingsphere.sharding.tables.t_order.key-generator.column = order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type = SNOWFLAKE
# 指定t_order表的分片策略,分片策略包括分片键和分片算法 {order_id % 2 + 1}:计算出的值要么为1,要么为2,根据结果选择使用哪张表
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column = order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression = t_order_$->{order_id % 2 + 1}
# 打开sql输出日志
spring.shardingsphere.props.sql.show = true
1. 首先定义数据源m1,并对m1进行实际的参数配置。
2.指定t_order表的数据分布情况,他分布在 m1.t_order_1,m1.t_order_2
3.指定t_order表的主键生成策略为SNOWFLAKE,SNOWFLAKE是一种分布式自增算法,保证id全局唯一
4.定义t_order分片策略,order_id为偶数的数据落在t_order_1,为奇数的落在t_order_2,分表策略的表达式为 t_order_$->{order_id % 2 + 1}
5.持久层
@Mapper public interface OrderDao { /** * 插入订单 * @param price * @param userId * @param status * @return */ @Insert("insert into t_order(price, user_id, status) values(#{price}, #{userId}, #{status})") int insertOrder(BigDecimal price, Long userId, String status); /** * 根据id列表查询订单 * @param orderIds * @return */ @Select("<script>" + "select" + " * " + " from t_order o " + " where o.order_id in " + " <foreach collection=‘orderIds‘ open=‘(‘ separator=‘,‘ close=‘)‘ item=‘id‘>" + " #{id} " + " </foreach>" + "</script>") List<Map> selectOrderbyIds(@Param("orderIds") List<Long> orderIds); }
6.测试
@RunWith(SpringRunner.class) @SpringBootTest(classes = {ShardingJdbcSimpleBootstrap.class}) public class OrderDaoTest { @Autowired OrderDao orderDao; @Test public void testInsertOrder() { // for (int i = 1; i <= 20; i++) { orderDao.insertOrder(new BigDecimal(21), 1L, "SUCCESS"); // } } @Test public void testSelectOrderbyIds() { List<Long> ids = new ArrayList<>(); ids.add(463369285373263872L); ids.add(463369285301960704L); List<Map> maps = orderDao.selectOrderbyIds(ids); System.out.println(maps); } }
执行流程:
查看日志,Sharding-JDBC在拿到用户要执行的sql之后干了哪些事儿:
(1)解析sql,获取片键值,在本例中是order_id
(2)Sharding-JDBC通过规则配置 t_order_$->{order_id % 2 + 1},知道了当order_id为偶数时,应该往t_order_1表插数据,为奇数时,往t_order_2插数据。
(3)于是Sharding-JDBC根据order_id的值改写sql语句,改写后的SQL语句是真实所要执行的SQL语句。
(4)执行改写后的真实sql语句
(5)将所有真正执行sql的结果进行汇总合并,返回。
Java配置类的方式配置分片规则:
@Configuration public class ShardingJdbcConfig { // 配置分片规则 // 定义数据源 Map<String, DataSource> createDataSourceMap() { DruidDataSource dataSource1 = new DruidDataSource(); dataSource1.setDriverClassName("com.mysql.jdbc.Driver"); dataSource1.setUrl("jdbc:mysql://localhost:3306/order_db?useUnicode=true"); dataSource1.setUsername("root"); dataSource1.setPassword("root"); Map<String, DataSource> result = new HashMap<>(); result.put("m1", dataSource1); return result; } // 定义主键生成策略 private static KeyGeneratorConfiguration getKeyGeneratorConfiguration() { KeyGeneratorConfiguration result = new KeyGeneratorConfiguration("SNOWFLAKE", "order_id"); return result; } // 定义t_order表的分片策略 TableRuleConfiguration getOrderTableRuleConfiguration() { TableRuleConfiguration result = new TableRuleConfiguration("t_order", "m1.t_order_$->{1..2}"); result.setTableShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "t_order_$->{order_id % 2 + 1}")); result.setKeyGeneratorConfig(getKeyGeneratorConfiguration()); return result; } // 定义sharding-Jdbc数据源 @Bean DataSource getShardingDataSource() throws SQLException { ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration(); shardingRuleConfig.getTableRuleConfigs().add(getOrderTableRuleConfiguration()); //spring.shardingsphere.props.sql.show = true Properties properties = new Properties(); properties.put("sql.show", "true"); return ShardingDataSourceFactory.createDataSource(createDataSourceMap(), shardingRuleConfig, properties); } }
由于采用了配置类所以需要屏蔽原来 application.properties 文件中spring.shardingsphere开头的配置信息。
需要在SpringBoot启动类中屏蔽使用spring.shardingsphere配置项的类:@SpringBootApplication(exclude = SpringBootConfiguration.class)
标签:postgresq shm utf8mb4 如何 template 表达式 otc tables code
原文地址:https://www.cnblogs.com/roadlandscape/p/12818732.html