还有好多其他排序而且每种排序都有优化,之后会不断添加.
/** * 文件名:SortTest.java * 时间:2014年11月5日下午6:05:13 * 作者:修维康 */ package chapter7; import java.util.Arrays; /** * 类名:SortTest 说明:各类排序分析详解 */ public class SortTest { /** * 方法名:insertionSort 说明:插入排序 时间复杂度O(N^2) */ public static <AnyType extends Comparable<? super AnyType>> void insertionSort( AnyType[] a) { for (int i = 1; i < a.length; i++) { AnyType temp = a[i]; int j = i - 1; while (j >= 0 && temp.compareTo(a[j]) < 0) { a[j + 1] = a[j]; j--; } a[j + 1] = temp; } } /** * 方法名:BInsertSort 说明:二分插入排序 时间复杂度O(N^2) 因为插入排序的前i - 1个元素是排好序的 * 所有将第i个元素插入到前面查到元素的时候 可以用二分查找 */ public static <AnyType extends Comparable<? super AnyType>> void BInsertSort( AnyType[] a) { for (int i = 1; i < a.length; i++) { int low = 0; AnyType temp = a[i]; int high = i - 1; int position = 0; // 二分找不到时 low 的位置是大于key的最小元素,high是小于key的最大元素 while (low <= high) { int mid = (low + high) / 2; if (a[mid].compareTo(temp) < 0) low = mid + 1; else high = mid - 1; } position = high; for (int j = i; j > position && j > 0; j--) a[j] = a[j - 1]; a[position + 1] = temp; } } /** * 方法名:shellSort 说明:希尔排序 时间复杂度(N^2) 利用增量序列 对用增量分组得到的序列进行插入排序。 */ public static <AnyType extends Comparable<? super AnyType>> void shellSort( AnyType[] a) { for (int gap = a.length / 2; gap > 0; gap /= 2) { for (int i = 0; i < gap; i++) { for (int j = i + gap; j < a.length; j += gap) { AnyType temp = a[j]; if (temp.compareTo(a[j - gap]) < 0) { int k = j - gap; while (k >= 0 && a[k].compareTo(temp) > 0) { a[k + gap] = a[k]; k -= gap; } a[k + gap] = temp; } } } } } /** * 方法名:bubbleSort 说明:冒泡排序 时间复杂度O(N^2) */ public static <AnyType extends Comparable<? super AnyType>> void bubbleSort( AnyType[] a) { for (int i = 0; i < a.length; i++) for (int j = i + 1; j < a.length; j++) { if (a[i].compareTo(a[j]) > 0) { AnyType temp = a[i]; a[i] = a[j]; a[j] = temp; } } } /************ 堆排序 ***********************************/ public static <AnyType extends Comparable<? super AnyType>> void buildHeap( AnyType[] array) { for (int i = array.length / 2; i >= 0; i--) shifDown(array, i, array.length); } /** * 方法名:shifUp 说明:上滤,其实只用下滤就可以完成建堆,排序 */ public static <AnyType extends Comparable<? super AnyType>> void shifUp( AnyType[] array, int valPos) { AnyType temp = array[valPos]; while (valPos > 0 && array[(valPos - 1) / 2].compareTo(temp) < 0) { array[valPos] = array[(valPos - 1) / 2]; valPos = (valPos - 1) / 2; } array[valPos] = temp; } /** * 方法名:shifDown 说明:下滤 注意数组越界 */ public static <AnyType extends Comparable<? super AnyType>> void shifDown( AnyType[] array, int valPos, int n) { AnyType temp = array[valPos]; while (valPos * 2 + 1 < n) { int child = valPos * 2 + 1;// 左儿子 if (child != n - 1 && array[child].compareTo(array[child + 1]) < 0) child++; if (temp.compareTo(array[child]) < 0) array[valPos] = array[child]; else break; valPos = child; } array[valPos] = temp; } public static <AnyType extends Comparable<? super AnyType>> void heapSort( AnyType[] a) { buildHeap(a); for (int i = a.length - 1; i > 0; i--) { AnyType temp = a[0]; a[0] = a[i]; a[i] = temp; shifDown(a, 0, i); } } /** * 方法名:mergeSort 说明:归并排序,JAVA中对泛型的排序用该排序,对基本类型的排序用快排 * 因为归并排序是比较次数最少的,java中对两个对象的比较 代价是昂贵的 */ public static <AnyType extends Comparable<? super AnyType>> void mergeSort( AnyType[] a) { AnyType[] tempArray = (AnyType[]) new Comparable[a.length]; mergeSort(a, tempArray, 0, a.length - 1); } private static <AnyType extends Comparable<? super AnyType>> void mergeSort( AnyType[] a, AnyType[] tempArray, int low, int high) { if (low < high) { int mid = (low + high) / 2; mergeSort(a, tempArray, low, mid); mergeSort(a, tempArray, mid + 1, high); merge(a, tempArray, low, mid + 1, high); } } private static <AnyType extends Comparable<? super AnyType>> void merge( AnyType[] a, AnyType[] tempArray, int lowPos, int highPos, int highEnd) { int leftEnd = highPos - 1; int temPos = lowPos; int numElements = highEnd - lowPos + 1; while (lowPos <= leftEnd && highPos <= highEnd) { if (a[lowPos].compareTo(a[highPos]) <= 0) tempArray[temPos++] = a[lowPos++]; else tempArray[temPos++] = a[highPos++]; } while (lowPos <= leftEnd) tempArray[temPos++] = a[lowPos++]; while (highPos <= highEnd) tempArray[temPos++] = a[highPos++]; for (int q = 0; q < numElements; q++, highEnd--) a[highEnd] = tempArray[highEnd]; } /** * 方法名:QuickSort 说明:快排 */ public static <AnyType extends Comparable<? super AnyType>> void quickSort( AnyType[] a) { quickSort(a, 0, a.length - 1); } private static <AnyType extends Comparable<? super AnyType>> void quickSort( AnyType[] a, int low, int high) { if (low < high) { int keyPos = partition(a, low, high); quickSort(a, low, keyPos - 1); quickSort(a, keyPos + 1, high); } } private static <AnyType extends Comparable<? super AnyType>> int partition( AnyType[] a, int low, int high) { AnyType key = a[low]; while (low < high) { while (low < high && a[high].compareTo(key) >= 0) high--; a[low] = a[high]; while (low < high && a[low].compareTo(key) <= 0) low++; a[high] = a[low]; } a[low] = key; return low; } /** * 方法名:selectSort 说明:选择排序O(N^2)的算法 */ public static <AnyType extends Comparable<? super AnyType>> void selectSort( AnyType[] a) { for (int i = 0; i < a.length; i++) { int j = selectMin(a, i); if (i != j) { AnyType temp = a[j]; a[j] = a[i]; a[i] = temp; } } } private static <AnyType extends Comparable<? super AnyType>> int selectMin( AnyType[] a, int n) { AnyType min = a[n]; int minPos = n; ; for (int i = n + 1; i < a.length; i++) if (a[i].compareTo(min) < 0) { min = a[i]; minPos = i; } return minPos; } /** * 方法名:main 说明:测试 */ public static void main(String[] args) { // TODO Auto-generated method stub Integer[] a = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Integer[] b = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Integer[] c = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Integer[] d = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Integer[] e = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Integer[] f = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Integer[] g = new Integer[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; insertionSort(a); BInsertSort(b); shellSort(c); selectSort(d); heapSort(e); quickSort(f); mergeSort(g); System.out.println(Arrays.toString(a)); System.out.println(Arrays.toString(b)); System.out.println(Arrays.toString(c)); System.out.println(Arrays.toString(d)); System.out.println(Arrays.toString(e)); System.out.println(Arrays.toString(f)); System.out.println(Arrays.toString(g)); } }
原文地址:http://blog.csdn.net/xiuweikang/article/details/40868959