码迷,mamicode.com
首页 > 移动开发 > 详细

Android Handler 机制(一):Handler 运行机制完整梳理

时间:2020-05-10 14:51:22      阅读:72      评论:0      收藏:0      [点我收藏+]

标签:阻塞   判断   i++   owa   get   cat   exit   通过   eth   

做Android开发的都应该知道Handler的运行机制,这个问题属于老生常谈了。

这里再简单赘述一下:

  1. Handler 负责发送消息;
  2. Looper 负责接收 Handler 发送的消息,并在合适的时间将消息回传给Handler;
  3. MessageQueue是一个存储消息的队列容器。

本文我们会详细完整的将Handler的运行机制梳理一遍。

一、ActivityThread类和APP的启动过程

为什么要讲ActivityThread和App的启动过程,因为Handler、Looper都是在这个阶段进行创建和初始化的。

ActivityThread就是我们常说的主线程或UI线程,ActivityThread的main方法是一个APP的真正入口,MainLooper在它的main方法中被创建。

    //ActivityThread的main方法
    public static void main(String[] args) {
        ...
        Looper.prepareMainLooper();
        ActivityThread thread = new ActivityThread();
        //在attach方法中会完成Application对象的初始化,然后调用Application的onCreate()方法
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        ...
        Looper.loop();
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

主线程的Handler作为ActivityThread的成员变量,是在ActivityThread的main方法被执行,ActivityThread被创建时进行初始化的。MessageQueue在Looper创建的时候作为成员变量被初始化创建。

二、Handler创建Message并发送给Looper

当我们创建一个Message并交给Handler发送的时候,内部调用的代码如下:

public final boolean sendMessageDelayed(Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

 最终调用到的是MessageQueue的enqueueMessage方法,enqueueMessage 是核心处理方法。下面是MessageQueue.enqueueMessage方法的代码:

    boolean enqueueMessage(Message msg, long when) {
        ...synchronized (this) {
            ...
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don‘t have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

这段代码处理的事情就是将进入消息队列的Message插入到合适的位置,并通过needWake判断是否需要调用底层唤醒整个消息队列。

结合上述的代码,我们可以得出整体的逻辑如下所示:

          +-------+     +------------+   +------------------+   +--------------+                        
          |Handler|     |MessageQueue|   |NativeMessageQueue|   |Looper(Native)|                        
          +--+----+     +-----+------+   +---------+--------+   +-------+------+                        
             |                |                    |                    |                               
             |                |                    |                    |                               
sendMessage()|                |                    |                    |                               
+----------> |                |                    |                    |                               
             |                |                    |                    |                               
             |enqueueMessage()|                    |                    |                               
             +--------------> |                    |                    |                               
             |                |                    |                    |                               
             |                |                    |                    |                                             
             |                |  nativeWake()      |                    |                               
             |                |    wake()          |                    |                               
             |                +------------------> |                    |                               
             |                |                    |                    |                               
             |                |                    |    wake()          |                               
             |                |                    +------------------> |                               
             |                |                    |                    |                               
             |                |                    |                    |                               
             |                |                    |                    |write(mWakeWritePipeFd, "W", 1)
             |                |                    |                    |                                 
             |                |                    |                    |                                                             
             +                +                    +                    +                               

三、Looper循环处理MessageQueue的Message

我们知道Loop循环处理Message调用的方法是 Looper.loop()。

而Looper.loop执行的代码:

/**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        ...
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            ...
        }
    }

下面是MessageQueue的next方法的代码:

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

这段代码处理的事情就是不断从MessageQueue中取出消息,如果没有消息的时候会给nativePollOnce的nextPollTimeoutMillis设置为-1,这时消息队列就处于阻塞状态了。

结合上述代码,可以得出逻辑如下图所示:

          +------+    +------------+  +------------------+  +--------------+                    
          |Looper|    |MessageQueue|  |NativeMessageQueue|  |Looper(Native)|                    
          +--+---+    +------+-----+  +---------+--------+  +-------+------+                    
             |               |                  |                   |                                                 
+-------------------------------------------------------------------------------+               
|[msg loop]  |   next()      |                  |                   |           |               
|            +------------>  |                  |                   |           |               
|            |               |                  |                   |           |               
|            |               |                  |                   |           |               
|            |               | nativePollOnce() |                   |           |               
|            |               |    pollOnce()    |                   |           |               
|            |               +----------------> |                   |           |               
|            |               |                  |                   |           |                  
|            |               |                  |                   |           |               
|            |               |                  |                   |           |               
|            |               |                  |     pollOnce()    |           |               
|            |               |                  +-----------------> |           |               
|            |               |                  |                   |           |               
|            |               |                  |                   | epoll_wait()              
|            |               |                  |                   +--------+  |               
|            |               |                  |                   |        |  |               
|            |               |                  |                   |        |  |               
|            |               |                  |                   | <------+  |               
|            |               |                  |                   | awoken()  |               
|            +               +                  +                   +           |                 
+-------------------------------------------------------------------------------+               

四、总结

1. 相关知识点

HandlerThread、ThreadLocal、Linux Epoll 机制。

HandlerThread:

HandlerThread相比Thread最大的优势在于引入MessageQueue概念,可以进行多任务队列管理。HandlerThread背后只有一个线程,所以任务是串行依次执行的。串行相对于并行来说更安全,各任务之间不会存在多线程安全问题。HandlerThread所产生的线程会一直存活,Looper会在该线程中持续的检查MessageQueue,并开启消息处理的循环。这一点和Thread(),AsyncTask都不同,thread实例的重用可以避免线程相关的对象的频繁重建和销毁。 getLooper().quit();来退出这个线程,其实原理很简单,就是改变在消息循环里面标志位,退出整个while循环,使线程执行完毕。

注意:要想更新界面内容,还是需要使用主线程的Looper,不然的话还是会抛错误。

 

2. 推荐文章:

1. Android Handler机制 - MessageQueue如何处理消息:https://blog.csdn.net/lovelease/article/details/81988696

2. ActivityThread的理解和APP的启动过程:https://blog.csdn.net/hzwailll/article/details/85339714

 

Android Handler 机制(一):Handler 运行机制完整梳理

标签:阻塞   判断   i++   owa   get   cat   exit   通过   eth   

原文地址:https://www.cnblogs.com/renhui/p/12857876.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!