码迷,mamicode.com
首页 > 编程语言 > 详细

11.分类与监督学习,朴素贝叶斯分类算法

时间:2020-05-13 18:36:51      阅读:63      评论:0      收藏:0      [点我收藏+]

标签:学习   分类预测   类型   预测   利用   cross   朴素贝叶斯   决策   建立   

1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别。

简述什么是监督学习与无监督学习。

 

2.朴素贝叶斯分类算法 实例

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:

–心梗

–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传手工演算过程。

 

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

 

3.使用朴素贝叶斯模型对iris数据集进行花分类。

尝试使用3种不同类型的朴素贝叶斯:

  • 高斯分布型
  • 多项式型
  • 伯努利型

并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

1.分类简单来说,就是根据文本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类不知道数据会分为几类,通过聚类分析将数据或者说用户聚合成几个群体,那就是聚类了。聚类不需要对数据进行训练和学习。

分类属于监督学习,聚类属于无监督学习。常见的分类比如决策树分类算法、贝叶斯分类算法等聚类的算法最基本的有系统聚类,K-means均值聚类

有监督学习:对具有标记的训练样本进行学习,以尽可能对训练样本集外的数据进行分类预测。

无监督学习:对未标记的样本进行训练学习

2.

设X{x1,x2,x3,x4,x5,x6}为影响疾病的因素

Y{y1,y2}为疾病类型,y1为心梗、y2为不稳定性心绞痛

则P(y1)=16/20,P(y2)=4/20,P(X)=1

P(y1|X)=P(X|y1)P(y1)/P(X)=P(x1|y1)P(x2|y1)P(x3|y1)P(x4|y1)P(x5|y1)P(x6|y1)P(y1)/P(X)=7/16*4/16*9/16*3/16*7/16*4/16*16/20/1=0.1009%

P(y2|X)=P(X|y2)P(y2)/P(X)=P(x1|y2)P(x2|y2)P(x3|y2)P(x4|y2)P(x5|y2)P(x6|y2)P(y2)/P(X)=1/4*1/4*1/4*1/4*2/4*2/4*4/20/1=0.0195%

根据上述结果:最可能是心梗

3

.技术图片

 

 

11.分类与监督学习,朴素贝叶斯分类算法

标签:学习   分类预测   类型   预测   利用   cross   朴素贝叶斯   决策   建立   

原文地址:https://www.cnblogs.com/du162/p/12881401.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!