标签:转化 int 插入 sig 规律 最大值 数组 capacity 支持
1、HashMap底层的实现
JDK 1.7 中 HashMap 是以数组+链表的形式组成的
JDK 1.8 之后数组+链表/红黑树的组成的,当链表大于 8 并且容量大于 64 时,链表结构会转换成红黑树结构,链表长度过长,影响性能,红黑树具有快速增删改查的功能
JDK1.中HashMap的几个重要属性:
// HashMap 初始化长度 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 // HashMap 最大长度 static final int MAXIMUM_CAPACITY = 1 << 30; // 1073741824 // 默认的加载因子 (扩容因子) static final float DEFAULT_LOAD_FACTOR = 0.75f; // 当链表长度大于此值且容量大于 64 时,
//由于TreeNode的大小约为常规节点的两倍,因此我们仅在垃圾箱包含足以保证使用的节点时才使用它们(TREEIFY_THRESHOLD)。当它们变得太小时(由于删除或调整大小),它们会转换回普通纸箱。
//在与分布良好的用户hashCodes一起使用时,树箱为很少使用。理想情况下,在随机hashCodes下,箱中的节点遵循泊松分布
//泊松分布,是一种统计与概率学里常见到的离散概率分布,适合于描述单位时间内随机事件发生的次数
static final int TREEIFY_THRESHOLD = 8;
// 转换链表的临界值,当元素小于此值时,会将红黑树结构转换成链表结构 static final int UNTREEIFY_THRESHOLD = 6; // 最小树容量 static final int MIN_TREEIFY_CAPACITY = 64;
数组中的元素被称为哈希桶,共包含四个元素:hash(哈希值)、key(键)、next(指向下一个节点的指针)、value(值)
//Hash底层结构源码 static class Node<K,V> implements Map.Entry<K,V> { final int hash;//通过hashcode计算出hash值 final K key;//要存储的键 V value;//要存储的值 Node<K,V> next;//指向下一个节点的指针 Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } //获取key值 public final K getKey() { return key; } //获取value值 public final V getValue() { return value; } //转化为字符串 public final String toString() { return key + "=" + value; } //hashcode方法 public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } //设置value public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } //重写equal方法 public final boolean equals(Object o) { //判断是否是一个对象,否,false if (o == this) return true; //判断是否是map类型,否,false if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; //判断key值和value是否相等,否,false if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
2、HashMap的加载因子为什么是0.75?
加载因子也叫扩容因子或负载因子,用来判断什么时候进行扩容的,假如加载因子是 0.5,HashMap 的初始化容量是 16,那么当 HashMap 中有 16*0.5=8 个元素时,HashMap 就会进行扩容
HashMap是一个插入慢、查询快的数据结构,它的加载因子是0.75是因为:
当加载因子设置比较大的时候,扩容的门槛就被提高了,扩容发生的频率比较低,占用的空间会比较小,但此时发生 Hash 冲突的几率就会提升,因此需要更复杂的数据结构来存储元素,这样对元素的操作时间就会增加,运行效率也会因此降低
而当加载因子值比较小的时候,扩容的门槛会比较低,因此会占用更多的空间,此时元素的存储就比较稀疏,发生哈希冲突的可能性就比较小,因此操作性能会比较高
3、HashMap中的重要方法
get()方法
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; //判断是否为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 判断第一个元素是否是要查询的元素 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 判断下一个元素是否是要查询的元素 if ((e = first.next) != null) { // 如果第一节点是树结构,则使用 getTreeNode 直接获取相应的数据 if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key);、 // 如果不是树结构,则循环获取相应的数据 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
put()方法
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 哈希表为空则创建表 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 根据 key 的哈希值计算出要插入的数组索引 i if ((p = tab[i = (n - 1) & hash]) == null) // 如果 table[i] 等于 null,则直接插入 tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 如果 key 已经存在了,直接覆盖 value if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 如果 key 不存在,判断是否为红黑树 else if (p instanceof TreeNode) // 红黑树直接插入键值对 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { // 为链表结构,循环准备插入 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //key存在直接覆盖 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 超过最大容量,扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
扩容方法
JDK 1.8 在扩容时并没有像 JDK 1.7 那样,重新计算每个元素的哈希值,而是通过高位运算(e.hash & oldCap)来确定元素是否需要移动
当结果为 0 时表示元素在扩容时位置不会发生任何变化,当结果为 1 时,表示元素在扩容时位置发生了变化,新的下标位置等于原下标位置 + 原数组长度
final Node<K,V>[] resize() { // 扩容前的数组 Node<K,V>[] oldTab = table; // 扩容前的数组的大小和阈值 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; // 预定义新数组的大小和阈值 int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩容了 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 扩大容量为当前容量的两倍,但不能超过 MAXIMUM_CAPACITY else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } // 当前数组没有数据,使用初始化的值 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults // 如果初始化的值为 0,则使用默认的初始化容量 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 如果新的容量等于 0 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; // 开始扩容,将新的容量赋值给 table table = newTab; // 原数据不为空,将原数据复制到新 table 中 if (oldTab != null) { // 根据容量循环数组,复制非空元素到新 table for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; // 如果链表只有一个,则进行直接赋值 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) // 红黑树相关的操作 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order // 链表复制,JDK 1.8 扩容优化部分 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; // 原索引,通过高位运算计算出原有元素在新数组的位置 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引 + oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 将原索引放到哈希桶中 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 将原索引 + oldCap 放到哈希桶中 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
位运算:
位与& | 两位数同时为“1”,结果才为“1”,否则为0 |
0&0=0; 0&1=0; 1&1=1; |
位或| | 两位数只要有一个为1,其值为1 |
0|0=0; 0|1=1; 1|1=1; |
异或^ | 两位数只能有一个1则为1,否则为0 |
0^0=0; 0^1=1; 1^0=1; 1^1=0 |
左移<< | 二进制位全部左移若干位(左边的二进制位丢弃,右边补0) | 1<<1=2; 1<<2=4; 1<<3=8 |
右移>> | 二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃 | 32>>1=16; 32>>2=8; 32>>3=4; |
4、HashMap 死循环分析
假设 HashMap 默认大小为 2,原本 HashMap 中有一个元素 key(5),我们再使用两个线程:t1 添加元素 key(3),t2 添加元素 key(7),当元素 key(3) 和 key(7) 都添加到 HashMap 中之后,线程 t1 在执行到 Entry<K,V> next = e.next; 时,交出了 CPU 的使用权,线程 t1 中的 e 指向了 key(3),而 next 指向了 key(7) ;之后线程 t2 重新 rehash 之后链表的顺序被反转,链表的位置变成了 key(5) → key(7) → key(3),当 t1 重新获得执行权之后,先执行 newTalbe[i] = e 把 key(3) 的 next 设置为 key(7),而下次循环时查询到 key(7) 的 next 元素为 key(3),于是就形成了 key(3) 和 key(7) 的循环引用,因此就导致了死循环的发生。
HashMap不支持多线程使用,要并发就用ConcurrentHashMap
void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry<K,V> e : table) { while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }
5、JDK1.7和1.8版本,HashMap的改动
JDK1.7的时候使用的是数组+ 单链表的数据结构。但是在JDK1.8及之后时,使用的是数组+链表+红黑树的数据结构(当链表的深度达到8的时候,也就是默认阈值,就会自动扩容把链表转成红黑树的数据结构来把时间复杂度从O(n)变成O(logN)提高了效率)
DK1.7用的是头插法,而JDK1.8及之后使用的都是尾插法,那么他们为什么要这样做呢?因为JDK1.7是用单链表进行的纵向延伸,当采用头插法时会容易出现逆序且环形链表死循环问题。但是在JDK1.8之后是因为加入了红黑树使用尾插法,能够避免出现逆序且链表死循环的问题
在JDK1.7的时候是直接用hash值和需要扩容的二进制数进行&(这里就是为什么扩容的时候为啥一定必须是2的多少次幂的原因所在,因为如果只有2的n次幂的情况时最后一位二进制数才一定是1,这样能最大程度减少hash碰撞)(hash值 & length-1),JDK1.8的时候直接用了JDK1.7的时候计算的规律,也就是扩容前的原始位置+扩容的大小值=JDK1.8的计算方式,而不再是JDK1.7的那种异或的方法。但是这种方式就相当于只需要判断Hash值的新增参与运算的位是0还是1就直接迅速计算出了扩容后的储存方式
6、HashMap如何解决哈希冲突
HashMap存入新的键值对时,先计算出哈希值,判断当前确定的索引位置是否存在相同hashcode和相同key的元素,如果存在相同的hashcode和相同的key的元素,那么新值覆盖原来的旧值,并返回旧值。 如果存在相同的hashcode,那么他们确定的索引位置就相同,这时判断他们的key是否相同,如果不相同,这时就是产生了hash冲突。 Hash冲突后,那么HashMap的单个bucket里存储的不是一个 Entry,而是一个 Entry 链。 系统只能必须按顺序遍历每个 Entry,直到找到想搜索的 Entry 为止——如果恰好要搜索的 Entry 位于该 Entry 链的最末端(该 Entry 是最早放入该 bucket 中), 那系统必须循环到最后才能找到该元素
分离链表法:若hash值和key都相同,则替换value,若hash值相同,key不相同,则形成一个单链表,将hash值相同,key不同的元素以Entry<V,V>的方式存放在链表中
开放地址法:用线性探测,从相同hash值开始,继续寻找下一个可用的槽位
标签:转化 int 插入 sig 规律 最大值 数组 capacity 支持
原文地址:https://www.cnblogs.com/carblack/p/12883914.html