标签:查询 div lead database val order nbsp 参考 rom
本文基于 sqlite3 进行测试,准备工作如下
import sqlite3 conn = sqlite3.connect(‘window.db‘) cur = conn.cursor() ##### 原始数据 sql = ‘‘‘select * from window;‘‘‘ cur.execute(sql) print(cur.fetchall()) # (0, 10) # (1, 11) # (2, 12) # (2, 13) # (2, 13) # (2, 15)
over 需要和 窗口函数 结合使用,语法为
function() + over + (partition by order by) as new_column
相当于在查询时 多输出一列 new_column;
其中 partition by 相当于分组,group by,order by 相当于排序
示例
sql = ‘‘‘select *, row_number() over (partition by x order by y) from window;‘‘‘ cur.execute(sql) print(cur.fetchall()) ## 先按 x 进行分组,然后按 y 进行排序,最后一列为 每组 排序的 顺序编号 # (0, 10, 1) # (1, 11, 1) # (2, 12, 1) # (2, 13, 2) # (2, 13, 3) ### 只有 x = 2 时有4个 y,编号 1 2 3 4 # (2, 15, 4)
有很多窗口函数,持续更新吧
排序 - row_number() rank() dense_rank()
## row_number(): # partition by 可有可无,order by 必须有 # 相同值有不同的序号 ## rank(): # partition by 可有可无,order by 必须有 # 相同值有相同的序号 # 相同值接下来的排序会受影响 ## dense_rank(): # partition by 可有可无,order by 必须有 # 相同值有相同的序号 # 相同值接下来的排序不受影响
示例
sql = ‘‘‘select *, row_number() over (partition by x order by y) as row_number_result, rank() over (partition by x order by y) as rank_result, dense_rank() over (partition by x order by y) as dense_rank_result from window;‘‘‘ cur.execute(sql) print(cur.fetchall()) ## 第 3 列 row_number_result,排序 1 2 3 4,不同序号 ## 第 4 列 rank_result,排序 1 2 2 4,相同值有相同序号,但影响 下一个排序,本应排 3,排成了 4 ## 第 5 列 dense_rank_result,排序 1 2 2 3,相同值有相同序号,切不影响 下一个排序 # (0, 10, 1, 1, 1) # (1, 11, 1, 1, 1) # (2, 12, 1, 1, 1) # (2, 13, 2, 2, 2) # (2, 13, 3, 2, 2) # (2, 15, 4, 4, 3)
sum
sql = ‘‘‘select x, y, sum(y) over (partition by x order by y) from window;‘‘‘ cur.execute(sql) # (0, 10, 10) # (1, 11, 11) # (2, 12, 12) # (2, 13, 38) # (2, 13, 38) # (2, 15, 53)
其他如 first_value()、last_value()、lag()、lead() 等等
按 value 设置窗口大小
sql = ‘‘‘select *, sum(y) over (order by y range between 2 preceding and 2 following ) from window‘‘‘ cur.execute(sql) # (0, 10, 33) ### 10 减2 加2 范围是 8-12,y 处于该范围的数为 10+11+12=33 # (1, 11, 59) ### 11 减2 加2 范围是 9-13,y 处于该范围的数为 10+11+12+13+13=59 # (2, 12, 59) # (2, 13, 64) # (2, 13, 64) # (2, 15, 41)
按 row 设置窗口大小
sql = ‘‘‘select *, sum(y) over (order by y rows between 2 preceding and 2 following ) from window‘‘‘ cur.execute(sql) # (0, 10, 33) ### 上下延伸2行,10+11+12=33 # (1, 11, 46) ### 上下延伸2行,10+11+12+13=46 # (2, 12, 59) ### 上下延伸2行,10+11+12+13+13=59 # (2, 13, 64) # (2, 13, 53) # (2, 15, 41)
不限制大小
over(order by salary range between unbounded preceding and unbounded following)或者 over(order by salary rows between unbounded preceding and unbounded following)
参考资料:
https://www.cnblogs.com/cjm123/p/8033639.html 很全
标签:查询 div lead database val order nbsp 参考 rom
原文地址:https://www.cnblogs.com/yanshw/p/12909857.html