标签:class 没有 work read ESS 初始 inf while process类
程序:例如xxx.py这是程序,是一个静态的
进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。
multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情
from multiprocessing import Process import time import os def dancing(): print(‘开始跳舞,进程号:%d‘ % os.getpid()) for i in range(5): print(‘正在跳舞:。。。。%d‘ % i) time.sleep(0.5) print(‘结束跳舞‘) def singing(): print(‘开始唱歌,进程号:%d‘ % os.getpid()) for i in range(5): print(‘正在唱歌:。。。。%d‘ % i) time.sleep(0.5) print(‘结束唱歌‘) if __name__ == ‘__main__‘: # 创建对象 p1 = Process(target=dancing) p2 = Process(target=singing) # 调用进程 p1.start() p2.start()
多进程在window10下的部分IDE中运行无效,如在sublime中运行结果还是并行的
而在安装python后自带的IDLE中运行,也是无效的
而只有在cmd终端运行时并行才有效果
from multiprocessing import Process import time import os def dancing(name, num, **kwargs): print(‘开始跳舞,进程号:%d, name=%s, num=%d, age=%d‘ % (os.getpid(), name, num, kwargs[‘age‘])) for i in range(num): print(‘%s正在跳舞:。。。。%d‘ % (name, i)) time.sleep(0.5) print(‘结束跳舞‘) def singing(name, num, **kwargs): print(‘开始唱歌,进程号:%d, name=%s, num=%d, age=%d‘ % (os.getpid(), name, num, kwargs[‘age‘])) for i in range(num): print(‘%s正在唱歌:。。。。%d‘ % (name, i)) time.sleep(0.5) print(‘结束唱歌‘) if __name__ == ‘__main__‘: # 创建对象 p1 = Process(target=dancing, args=(‘xiaoming‘, 5), kwargs={‘age‘: 10}) p2 = Process(target=singing, args=(‘xiaohong‘, 10), kwargs={‘age‘: 20}) # 调用进程 p1.start() p2.start()
运行结果
from multiprocessing import Process, Queue import time def put(queue): for i in [11, 22, 33, 44, 55]: print(‘put: %d‘ % i) queue.put(i) time.sleep(0.5) def read(queue): while not queue.empty(): print(‘read: %d‘ % queue.get()) time.sleep(0.5) if __name__ == ‘__main__‘: # 创建Queue对象 queue = Queue() # 创建对象 p1 = Process(target=put, args=(queue, )) p2 = Process(target=read, args=(queue, )) # 开始进程p1 p1.start() # 等待p1运行完 p1.join() print(‘queue是否满了:‘, queue.full(), ‘, 是否空了:‘, queue.empty()) print(‘queue的大小为:%d‘ % queue.qsize()) # 开始进程p2 p2.start() # 等待p2运行完 p2.join() print(‘queue是否满了:‘, queue.full(), ‘, 是否空了:‘, queue.empty()) print(‘queue的大小为:%d‘ % queue.qsize())
运行结果为:
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,
from multiprocessing import Pool import time import os import random def worker(msg): start_time = time.time() print(‘----------%s开始执行,进程号%d‘ % (msg, os.getpid())) time.sleep(random.random()) end_time = time.time() print(‘----------%s执行结束, 耗时%0.2f‘ % (msg, (end_time - start_time))) # 异常测试 print(‘捕获下面的print异常前‘) try: print(1 + ‘end‘) except Exception as e: print(‘捕获到异常‘) print(‘不捕获下面的print异常‘) print(1 + ‘end‘) print(‘不捕获异常后‘) def main(): # 定义进程池,最大进程数为3 pool = Pool(3) for i in range(1, 8): # 每次循环将会用空闲出来的子进程去调用目标 pool.apply_async(worker, (i, )) pool.close() pool.join() # worker(0) if __name__ == ‘__main__‘: main()
运行结果为:
可以看到先立马将三个进程放入进程池中并开始执行,等到其中的某个进程运行结束后,再将新的进程放入进程池中
在异常测试中发现,进程池中的方法,如果出现了异常,在运行时并不会直接报错,而只是是中断该进程,所以这里需要注意要手动将可能的异常进行捕获
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
标签:class 没有 work read ESS 初始 inf while process类
原文地址:https://www.cnblogs.com/gcxblogs/p/12934312.html