标签:程序员 sum source new 复制 合成 targe 竞争 一个
ForkJoin是Java7提供的原生多线程并行处理框架,其基本思想是将大人物分割成小任务,最后将小任务聚合起来得到结果。它非常类似于HADOOP提供的MapReduce框架,只是MapReduce的任务可以针对集群内的所有计算节点,可以充分利用集群的能力完成计算任务。ForkJoin更加类似于单机版的MapReduce。
package com.inspur.jiyq.forkjoin.sum; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.Future; import java.util.concurrent.RecursiveTask; public class CountTask extends RecursiveTask<Integer> { private static final long serialVersionUID = -3611254198265061729L; public static final int threshold = 2; private int start; private int end; public CountTask(int start, int end) { this.start = start; this.end = end; } @Override protected Integer compute() { int sum = 0; //如果任务足够小就计算任务 boolean canCompute = (end - start) <= threshold; if(canCompute) { for (int i=start; i<=end; i++) { sum += i; } } else { // 如果任务大于阈值,就分裂成两个子任务计算 int middle = (start + end)/2; CountTask leftTask = new CountTask(start, middle); CountTask rightTask = new CountTask(middle+1, end); // 执行子任务 leftTask.fork(); rightTask.fork(); //等待任务执行结束合并其结果 int leftResult = leftTask.join(); int rightResult = rightTask.join(); //合并子任务 sum = leftResult + rightResult; } return sum; } public static void main(String[] args) { ForkJoinPool forkjoinPool = new ForkJoinPool(); //生成一个计算任务,计算1+2+3+4 CountTask task = new CountTask(1, 100); //执行一个任务 Future<Integer> result = forkjoinPool.submit(task); try { System.out.println(result.get()); } catch(Exception e) { System.out.println(e); } } }
标签:程序员 sum source new 复制 合成 targe 竞争 一个
原文地址:https://www.cnblogs.com/wuaidadi/p/12982506.html