标签:根据 中间 城市 alt table 其他 mem 树根 方法
整理自极客时间MySQL45讲
是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。
不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。
哈希索引做区间查询的速度是很慢的。哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。
有序数组在等值查询和范围查询场景中的性能就都非常优秀。但是,在需要更新数据的时候就麻烦了,往中间插入一个记录就必须得挪动后面所有的记录,成本太高。所以,有序数组索引只适用于静态存储引擎,比如要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。
当然为了维持O(log(N))的查询复杂度,需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。
树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。
以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。
在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。
每一个索引在InnoDB里面对应一棵B+树。
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。
create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。
根据叶子节点的内容,索引类型分为主键索引和非主键索引。
主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。
非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。
也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。
B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,需要逻辑上挪动后面的数据,空出位置。如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。
自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
从性能和存储空间方面考量,自增主键往往是更合理的选择。
回到主键索引树搜索的过程,我们称为回表。由于查询结果所需要的数据只在主键索引上有,所以不得不回表。可以经过索引优化,避免回表过程。
如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务DBA,或者称为业务数据架构师的工作。
B+树这种索引结构,可以利用索引的“最左前缀”,来定位记录。
为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。
索引项是按照索引定义里面出现的字段顺序排序的。
当逻辑需求是查到所有名字是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有需要的结果。
如果要查的是所有名字第一个字是“张”的人,SQL语句的条件是"where name like ‘张%’"。这时,也能够用上这个索引,查找到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止。
可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。
基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。
这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
那么,如果既有联合查询,又有基于a、b各自的查询呢?查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的,这时候不得不维护另外一个索引,也就是说需要同时维护(a,b)、(b) 这两个索引。
这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name字段是比age字段大的 ,那就建议创建一个(name,age)的联合索引和一个(age)的单字段索引。
标签:根据 中间 城市 alt table 其他 mem 树根 方法
原文地址:https://www.cnblogs.com/Ryan16231112/p/13169412.html