标签:资源 系统 代码 def 生成 就是 对象 函数 解决
线程是进程中可以调度执行的实体。而且,它是操作系统中可以执行的最小处理单元。简单地说,一个线程就是一个程序中可以独立于其他代码执行的指令序列。为了简单起见,你可以假设线程只是进程的子集!
锁是Python中用于同步的最简单的方式。锁有两种状态:上锁、释放锁。
锁是线程模块中的一个类,有两个主要方法:acquire()和release() 当调用acquire()方法时,它锁定锁的执行并阻塞锁的执行,直到其他线程调用release()方法将其设置为解锁状态。锁帮助我们有效地访问程序中的共享资源,以防止数据损坏,它遵循互斥,因为一次只能有一个线程访问特定的资源。
让我们看看下面的例子来理解锁的使用:
import threading #创建一个lock对象 lock = threading.Lock() #初始化共享资源 abce = 0 def sumOne(): global abce #锁定共享资源 lock.acquire() abce = abce + 1 #释放共享资源 lock.release() def sumTwo(): global abce #锁定共享资源 lock.acquire() abce = abce + 2 #释放共享资源 lock.release() #调用函数 sumOne() sumTwo() print(abce)
在上面的程序中,lock是一个锁对象,全局变量abce是一个共享资源,sumOne()和sumTwo()函数扮作两个线程,在sumOne()函数中共享资源abce首先被锁定,然后增加了1,然后abce被释放。sumTwo()函数执行类似操作。 两个函数sumOne()和sumTwo()不能同时访问共享资源abce,一次只能一个访问共享资源。
默认的lock不能识别lock当前被哪个线程持有。如果任何线程正在访问共享资源,那么试图访问共享资源的其他线程将被阻塞,即使锁定共享资源的线程也是如此。 在这些情况下,可重入锁(或RLock)用于防止访问共享资源时出现不必要的阻塞。如果共享资源在RLock中,那么可以安全地再次调用它。 RLocked资源可以被不同的线程重复访问,即使它在被不同的线程调用时仍然可以正常工作。
让我们看看下面的例子来理解RLocks的使用:
import threading #创建一个lock对象 lock = threading.Lock() #初始化共享资源 abce = 0 #本线程访问共享资源 lock.acquire() abce = abce + 1 #这个线程访问共享资源会被阻塞 lock.acquire() abce = abce + 2 lock.release() print(abce)
在上面的程序中,两个线程同时尝试访问共享资源abce,这里当一个线程当前正在访问共享资源abce时,另一个线程将被阻止访问它。 当两个或多个线程试图访问相同的资源时,有效地阻止了彼此访问该资源,这就是所谓的死锁,因此上述程序没有生成任何输出。
但是,在程序中上述问题可以通过使用RLock来解决。
import threading #创建一个rlock对象 lock = threading.RLock() #初始化共享资源 abce = 0 #本线程访问共享资源 lock.acquire() abce = abce + 1 #这个线程尝试访问共享资源 lock.acquire() abce = abce + 2 lock.release() print(abce)
在这里,没有阻止程序中的线程访问共享资源abce。 对于RLock对象锁的每个acquire(),我们需要调用release()一次。
从上面提到的众多程序和解释中,在Python中一个Lock对象和一个RLock对象有很多区别:
locks | rlocks |
---|---|
lock对象无法再被其他线程获取,除非持有线程释放 | rlock对象可以被其他线程多次获取 |
lock对象可被任何线程释放 | rlock对象只能被持有的线程释放 |
lock对象不可以被任何线程拥有 | rlock对象可以被多个线程拥有 |
对一个对象锁定是很快的 | 对一个对象加rlock比加lock慢 |
标签:资源 系统 代码 def 生成 就是 对象 函数 解决
原文地址:https://www.cnblogs.com/abclife/p/13196044.html