标签:with lambda int name 使用 eps ons rust inverse
Tensorflow supports symbol computation well like Automatic derivation and the program
could be excuted with GPU, which will save our time.
The Dogleg method to solve the subproblems of trust region method
Get the gradient of function f with tf.gradients()
f= lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
x_value = [1.0,2.0]
f_gradients = getGrad(f, x_value)
Get the Hessian matrix of f with tf.hessian
Trust region method with subproblems solved by the Dogleg method
Exact line search method when the target function is quadratic
quasi-Newton method
f is the target function, c_eq is a list contains equation constraints,
c_leq is a list contains unequal constrains, epsilon is the terminal parameter
these functions could be function name or anonymous functions, which defined by ‘lambda‘
The subproblem is solved by Newton Method, but it will be modified in the future because sometimes it‘s hard to compute the inverse matrix of Hessian matrix.
f = lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
f.paraLength = 2 ## 这一步不可缺少
x_k, f_k = TrustRegion_dogleg(f, delta = 10)
print(‘Demo 2:quasi-Newton method demo‘)
f = lambda x:x[0]**2 + 2 * x[1]**2
f.paraLength = 2
x_0 = np.array([1, 1])
x_k, f_k = QuasiNewton(f, x_0)
print(‘Demo 3:penalty function method demo‘)
f = lambda x:x[0] + x[1]
f.paraLength = 2
c_eq = [lambda x:x[0]**2 + x[1]**2 - 2]
c_leq = []
x_k, f_k = PenaltySimple(f, c_eq, c_leq, [-3,-4])
标签:with lambda int name 使用 eps ons rust inverse
原文地址:https://www.cnblogs.com/TigerZhang/p/13196363.html