标签:warning set count tick height icm clear odi 总结
本节目录
常用函数一:词频统计
常用函数二:word2vec
常用函数三:doc2vec
常用函数四:LDA主题分析
# -*- coding: utf-8 -*- """ Datetime: 2020/06/25 Author: Zhang Yafei Description: 统计词频 输入 文件名 列名 分割符 输出 词频统计结果-文件 """ from collections import Counter import pandas as pd def count_word_freq(file_path, col_name, to_file, sep=‘; ‘, multi_table=False): """ 统计词频 :param file_path: 读取文件路径 :param col_name: 统计词频所在列名 :param to_file: 保存文件路径 :param sep: 词语分割符 :param multi_table: 是否读取多张表 :return: """ if multi_table: datas = pd.read_excel(file_path, header=None, sheet_name=None) with pd.ExcelWriter(path=to_file) as writer: for sheet_name in datas: df = datas[sheet_name] keywords = (word for word_list in df.loc[df[col_name].notna(), col_name].str.split(sep) for word in word_list if word) words_freq = Counter(keywords) words = [word for word in words_freq] freqs = [words_freq[word] for word in words] words_df = pd.DataFrame(data={‘word‘: words, ‘freq‘: freqs}) words_df.sort_values(‘freq‘, ascending=False, inplace=True) words_df.to_excel(excel_writer=writer, sheet_name=sheet_name, index=False) writer.save() else: df = pd.read_excel(file_path) keywords = (word for word_list in df.loc[df[col_name].notna(), col_name].str.split() for word in word_list if word) words_freq = Counter(keywords) words = [word for word in words_freq] freqs = [words_freq[word] for word in words] words_df = pd.DataFrame(data={‘word‘: words, ‘freq‘: freqs}) words_df.sort_values(‘freq‘, ascending=False, inplace=True) words_df.to_excel(to_file, index=False) if __name__ == ‘__main__‘: # 对data.xlsx所有表中的keyword列统计词频,以默认‘; ‘为分割符切割词语,统计该列分词后的词频,结果保存至res.xlsx中 count_word_freq(file_path=‘data.xlsx‘, col_name=‘keyword‘, to_file=‘res.xlsx‘, multi_table=True)
经验分享:注意输入格式为excel文件,这也是我学习生活中常用的处理方式,直接拿去用,非常方便
另外,在我之前的一篇博客中,我介绍了Python统计词频常用的几种方式,不同的场景可以满足你各自的需求。博客传送门:
https://www.cnblogs.com/zhangyafei/p/10653977.html
word2vec是一种词向量技术,核心思想是把单词转换成向量,意思相近的单词向量间的距离越近,反之越远。实际使用的体验也是非常好。
# -*- coding: utf-8 -*- """ Datetime: 2019/7/25 Author: Zhang Yafei Description: word2vec data.txt word1 word2 word3 ... word1 word2 word3 ... word1 word2 word3 ... ... ... ... ... """ import warnings warnings.filterwarnings(action=‘ignore‘, category=UserWarning, module=‘gensim‘) from gensim.models.word2vec import LineSentence from gensim.models import Word2Vec def word2vec_model_train(file, model_path, ): model = Word2Vec(LineSentence(file), size=100, window=5, iter=10, min_count=5) model.save(model_path) def word2vec_load(self, model_path): model = Word2Vec.load(model_path) print(model.similarity(‘生育意愿‘, ‘主观幸福感‘)) for key in model.wv.similar_by_word(‘新生代农民工‘, topn=50): print(key) if __name__ == "__main__": word2vec_model_train(file=‘data.txt‘, model_path=‘word2vec_keywords.model‘) # word2vec_load(model_path=‘word2vec_keywords.model‘)
doc2vec和word2vec类似, word2vec是词向量技术,那么doc2vec见名知意就是文档向量技术,可以将一篇文档转换成一个向量。理论上讲,意思相近的句子向量间的距离越近。
# -*- coding: utf-8 -*- """ Datetime: 2019/7/14 Author: Zhang Yafei Description: doc2vec docs format TaggedDocument([word1, word2, ...], [doc tag]) TaggedDocument([word1, word2, ...], [doc tag]) TaggedDocument([word1, word2, ...], [doc tag]) ... """ import os import warnings warnings.filterwarnings(action=‘ignore‘, category=UserWarning, module=‘gensim‘) from matplotlib import pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans import pandas as pd import numpy as np from gensim.models.doc2vec import Doc2Vec, TaggedDocument output_dir = ‘res‘ model_dir = ‘model‘ if not os.path.exists(model_dir): os.mkdir(model_dir) if not os.path.exists(output_dir): os.mkdir(output_dir) def data_preparetion(): """ 数据预处理 准备文档词矩阵 :return [TaggedDocument(words=[‘contribut‘, ‘antarctica‘, ‘past‘, ‘futur‘, ‘sea-level‘, ‘rise‘], tags=[0]), TaggedDocument(words=[‘evid‘, ‘limit‘, ‘human‘, ‘lifespan‘], tags=[1]), ...] """ print(‘开始准备文档语料‘) df = pd.read_excel(‘data/data.xlsx‘) documents = iter(df.text) for index, doc in enumerate(documents): doc_word_list = doc.split() yield TaggedDocument(doc_word_list, [index]) def get_datasest(): df = pd.read_excel(‘data/data.xlsx‘) documents = iter(df.text) datasets = [] for index, doc in enumerate(documents): doc_word_list = doc.split() datasets.append(TaggedDocument(doc_word_list, [index])) return datasets class Doc2VecModel(object): """ Doc2Vec模型 """ def __init__(self, vector_size=100, dm=0, window=10, epochs=30, iter_num=10): self.model = Doc2Vec(vector_size=vector_size, dm=dm, window=window, epochs=epochs, iter=iter_num, ) def run(self, documents, model_path, epochs=30): """ 训练模型及结果的保存 :param documents: iterable [[doc1], [doc2], [doc3], ...] :param model_path: str :param max_epochs: int :param epochs: int :return: """ # 根据文档词矩阵构建词汇表 print(‘开始构建词汇表‘) self.model.build_vocab(documents) print(‘开始训练‘) self.model.train(documents, total_examples=self.model.corpus_count, epochs=epochs) # 模型保存 self.model.save(f‘{model_dir}/{model_path}‘) print(f‘{model_path}\t保存成功‘) @staticmethod def simlarity_cal(vector1, vector2): vector1_mod = np.sqrt(vector1.dot(vector1)) vector2_mod = np.sqrt(vector2.dot(vector2)) if vector2_mod != 0 and vector1_mod != 0: simlarity = (vector1.dot(vector2)) / (vector1_mod * vector2_mod) else: simlarity = 0 return simlarity def model_test(self): doc2vec_model = Doc2Vec.load(f‘{model_dir}/doc2vec.model‘) vectors_docs = doc2vec_model.docvecs.vectors_docs datasets = get_datasest() sentence1 = ‘老年人 生活满意度 影响 全国 老年人口 健康状况 调查数据 以往 社会经济因素 健康 因素 人口因素 老年人 生活满意度 影响 基础 引入 变量 模型 分析 老年人 生活满意度 自评 影响 统计 控制 影响因素 基础 老年人 性格 情绪 孤独感 焦虑 程度 生活满意度 自评 影响 影响 原有 模型 变量 变化 生活满意度 老年人‘ inferred_vector = doc2vec_model.infer_vector(sentence1) sims = doc2vec_model.docvecs.most_similar([inferred_vector], topn=10) for count, sim in sims: sentence = datasets[count] words = ‘‘ for word in sentence[0]: words = words + word + ‘ ‘ print(words, sim, len(sentence[0])) def get_topic_num(self, min_topic_num, max_topic_num): doc2vec_model = Doc2Vec.load(f‘{model_dir}/doc2vec.model‘) vectors_docs = doc2vec_model.docvecs.vectors_docs silhouette_score_dict = {} ch_score_dict = {} inertia_score = {} for n in range(min_topic_num, max_topic_num + 1): km = KMeans(n_clusters=n) km.fit(X=vectors_docs) pre_labels = km.labels_ inertia = km.inertia_ sil_score = metrics.silhouette_score(X=vectors_docs, labels=pre_labels) ch_score = metrics.calinski_harabaz_score(X=vectors_docs, labels=pre_labels) print(f‘{n} inertia score: {inertia} silhouette_score: {sil_score} ch score: {ch_score}‘) inertia_score[n] = inertia silhouette_score_dict[n] = sil_score ch_score_dict[n] = ch_score self.plot_image(data=silhouette_score_dict, xticks=range(min_topic_num, max_topic_num + 1), title=‘不同聚类个数下silhouette_score对比‘, xlabel=‘cluster_num‘, ylabel=‘silhouette_score‘) self.plot_image(data=ch_score_dict, xticks=range(min_topic_num, max_topic_num + 1), title=‘不同聚类个数下calinski_harabaz_score对比‘, xlabel=‘cluster_num‘, ylabel=‘calinski_harabaz_score‘) self.plot_image(data=inertia_score, xticks=range(min_topic_num, max_topic_num + 1), title=‘不同聚类个数下inertia score对比‘, xlabel=‘cluster_num‘, ylabel=‘inertia_score‘) @staticmethod def plot_image(data, title, xticks, xlabel, ylabel): """ 画图 """ plt.rcParams[‘font.sans-serif‘] = [‘SimHei‘] plt.figure(figsize=(8, 4), dpi=500) plt.plot(data.keys(), data.values(), ‘#007A99‘) plt.xticks(xticks) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) plt.savefig(f‘{output_dir}/{title}.png‘, bbox_inches=‘tight‘, pad_inches=0.1) plt.show() if __name__ == ‘__main__‘: docs = data_preparetion() model = Doc2VecModel(vector_size=100, epochs=30, window=10, dm=0, iter_num=20) model.run(documents=docs, model_path=f‘doc2vec.model‘) # model.model_test() # model.get_topic_num(min_topic_num=5, max_topic_num=40)
常用函数四:LDA主题分析
LDA(Latent dirichlet allocation)是文档主题生成模型中最有代表性的一种。LDA于2003年由David Blei等[14]提出,由于其应用简单且有效,在学术界被广泛应用在主题聚类、热点识别、演化分析等领域。
# -*- coding: utf-8 -*- """ Datetime: 2019/7/14 Author: Zhang Yafei Description: LDA主题模型 安装依赖环境 pip install pandas numpy matplotlib sklearn 使用说明: 1. 数据准备 index, docs = data_preparetion(path=‘data/数据.xlsx‘, doc_col=‘摘要‘) 数据格式为excel, path是数据文件路径, doc_col是列名, 需修改数据文件路径和文档列名 2. LDA模型参数设定 LDA模型指定主题个数范围 def main(index=index, docs=docs, test_topic_num=True, tfidf=False, max_iter=50, min_topic=5, max_topic=30, topic_word_num=20) :param index: 索引 :param docs: 文档 :param n_topics: 指定主题个数 :param tfidf: 是否对文档采用tfidf编码 :param max_iter: 最大迭代次数 :param min_topic: 最小主题个数 前提为test_topic_num=True :param max_topic: 最大主题个数 前提为test_topic_num=True :param learning_offset: 学习率 :param random_state: 随机状态值 :param test_topic_num: 测试主题个数 :param topic_word_num: 主题词矩阵词的个数 """ import json import os import time from functools import wraps import numpy as np import pandas as pd import scipy from matplotlib import pyplot as plt from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity pd.set_option(‘display.max_columns‘, None) data_dir = ‘data‘ output_dir = ‘res‘ if not os.path.exists(output_dir): os.mkdir(output_dir) def timeit(func): """ 时间装饰器 """ @wraps(func) def inner(*args, **kwargs): start_time = time.time() ret = func(*args, **kwargs) end_time = time.time() - start_time if end_time < 60: print(f‘共花费时间:‘, round(end_time, 2), ‘秒‘) else: minute, sec = divmod(end_time, 60) print(f‘花费时间\t{round(minute)}分\t{round(sec, 2)}秒‘) return ret return inner class SklearnLDA(object): def __init__(self, corpus, n_topics, tf_idf=True, max_iter=10, learning_method=‘online‘, learning_offset=50., random_state=0, res_dir=‘res‘): self.tfidf = tf_idf self.lda_model = LatentDirichletAllocation(n_components=n_topics, max_iter=max_iter, doc_topic_prior=0.001, topic_word_prior=0.02, learning_method=learning_method, learning_offset=learning_offset, random_state=random_state) # 定义lda模型 print(‘正在将语料转化为向量------------‘) self.vectorizer = TfidfVectorizer() if tf_idf else CountVectorizer() self.bow_corpus = self.vectorizer.fit_transform(corpus) # 将语料生成词袋向量 self.vocab = self.vectorizer.get_feature_names() # 词汇表 self.res_dir = res_dir def get_topic_num(self, index, max_iter=10, min_topic=5, max_topic=30, learning_offset=50., random_state=0, topic_word_num=30): """ 确定LDA主题个数 """ print(‘开始训练模型, 计算困惑度‘) perplexity_dict = {} kld_list = {} jsd_list = {} cos_sim_list = {} w_score_dict = {} x_ticks = list(range(min_topic, max_topic + 1)) for n_topics in x_ticks: result_dir = f‘{self.res_dir}/{n_topics}‘ if not os.path.exists(result_dir): os.mkdir(result_dir) if os.path.exists(f‘{result_dir}/topic-word-{topic_word_num}.csv‘): doc_topic_matrix = np.loadtxt(f‘{result_dir}/doc_topic_matrix.txt‘) topic_word_matrix = np.loadtxt(f‘{result_dir}/topic_word_matrix.txt‘) else: lda = LatentDirichletAllocation(n_components=n_topics, max_iter=max_iter, learning_method=‘online‘, doc_topic_prior=0.001, topic_word_prior=0.02, learning_offset=learning_offset, random_state=random_state) # 定义lda模型 doc_topic_matrix = lda.fit_transform(self.bow_corpus) topic_word_matrix = lda.components_ # 计算困惑度 perplexity = lda.perplexity(self.bow_corpus) perplexity_dict[n_topics] = perplexity print(f‘topic: {n_topics}\tsklearn preplexity: {perplexity:.3f}‘) # 保存数据 np.savetxt(f‘{result_dir}/doc_topic_matrix.txt‘, doc_topic_matrix) np.savetxt(f‘{result_dir}/topic_word_matrix.txt‘, topic_word_matrix) doc_topic_columns = [f‘topic{num}‘ for num in range( 1, n_topics + 1)] topic_word_columns = [ f‘word{num}‘ for num in range(1, topic_word_num + 1)] doc_topic_index = index topic_word_index = pd.Index(data=doc_topic_columns, name=‘topic‘) doc_topic_data = np.argsort(-doc_topic_matrix, axis=1) topic_word_data = np.array(self.vocab)[np.argsort(-topic_word_matrix, axis=1)[:, :topic_word_num]] self.save_data(file_path=f‘{result_dir}/doc-topic.csv‘, data=doc_topic_data, columns=doc_topic_columns, index=doc_topic_index) self.save_data(file_path=f"{result_dir}/topic-word-{topic_word_num}.csv", data=topic_word_data, columns=topic_word_columns, index=topic_word_index) # 计算文本–主题最大平均分布概率和主题–词语平均相似度概率的加权数值的方法 w_score = self.weight_score(doc_topic_matrix, topic_word_matrix) w_score_dict[n_topics] = w_score # 计算KL距离和JS距离 kld_sum = 0 jsd_sum = 0 for topic_vec1 in topic_word_matrix: for topic_vec2 in topic_word_matrix: kld_sum += self.kl_divergence(topic_vec1, topic_vec2) jsd_sum += self.js_divergence(topic_vec1, topic_vec2) avg_kld = kld_sum / (n_topics ** 2) kld_list[n_topics] = avg_kld avg_jsd = jsd_sum / (n_topics ** 2) jsd_list[n_topics] = avg_jsd # 计算余弦相似度 cos_sim_matrix = cosine_similarity(X=topic_word_matrix) cos_sim = cos_sim_matrix.sum() / (n_topics * (n_topics - 1)) cos_sim_list[n_topics] = cos_sim # 计算JS散度 for topic_vec1 in topic_word_matrix: for topic_vec2 in topic_word_matrix: jsd_sum += self.js_divergence(topic_vec1, topic_vec2) # 打印 print(f‘topic: {n_topics}\tavg KLD: {avg_kld:.3f}‘) print(f‘topic: {n_topics}\tavg JSD: {avg_jsd:.3f}‘) print(f‘topic: {n_topics}\tcosine_similarity: {cos_sim:.3f}‘) print(f‘topic: {n_topics}\tweight_score: {w_score:.3f}‘) # 画图 if perplexity_dict: self.plot_image(data=perplexity_dict, x_ticks=list(perplexity_dict.keys()), title=‘lda_topic_perplexity‘, xlabel=‘topic num‘, ylabel=‘perplexity‘) self.plot_image(data=kld_list, x_ticks=x_ticks, title=‘lda_topic_KLD‘, xlabel=‘topic num‘, ylabel=‘KLD‘) self.plot_image(data=jsd_list, title=‘lda_topic_JSD‘, x_ticks=x_ticks, xlabel=‘topic num‘, ylabel=‘JSD‘) self.plot_image(data=cos_sim_list, title=‘lda_topic_cosine_simlarity‘, x_ticks=x_ticks, xlabel=‘topic num‘, ylabel=‘cosine_simlarity‘) self.plot_image(data=w_score_dict, title=‘lda_topic_weight_score‘, x_ticks=x_ticks, xlabel=‘topic num‘, ylabel=‘weight_score‘) def train(self, index, topic_word_num=10, save_matrix=True, save_data=True, print_doc_topic=False, print_topic_word=True, save_vocab=True): """ 训练LDA模型 """ print(‘正在训练模型‘) doc_topic_matrix = self.lda_model.fit_transform(self.bow_corpus) topic_word_matrix = self.lda_model.components_ if save_vocab: with open(‘res/vocab.txt‘, ‘w‘) as f: json.dump(self.vocab, f) if save_matrix: print(‘正在保存矩阵‘) if self.tfidf: np.savetxt(f‘{output_dir}/doc_topic_tfidf_matrix.txt‘, doc_topic_matrix) np.savetxt(f‘{output_dir}/topic_word_tfidf_matrix.txt‘, topic_word_matrix) else: np.savetxt(f‘{output_dir}/doc_topic_matrix.txt‘, doc_topic_matrix) np.savetxt(f‘{output_dir}/topic_word_matrix.txt‘, topic_word_matrix) if save_data: print(‘正在保存数据‘) doc_topic_columns = [f‘topic{num}‘ for num in range( 1, self.lda_model.n_components + 1)] topic_word_columns = [ f‘word{num}‘ for num in range(1, topic_word_num + 1)] doc_topic_index = index topic_word_index = pd.Index(data=doc_topic_columns, name=‘topic‘) doc_topic_data = np.argsort(-doc_topic_matrix, axis=1) topic_word_data = np.array( self.vocab)[np.argsort(-topic_word_matrix, axis=1)[:, :topic_word_num]] if self.tfidf: self.save_data(file_path=f‘{output_dir}/doc-topic_tfidf.csv‘, data=doc_topic_data, columns=doc_topic_columns, index=doc_topic_index) self.save_data(file_path=f"{output_dir}/topic-word-tfidf_{topic_word_num}.csv", data=topic_word_data, columns=topic_word_columns, index=topic_word_index) else: self.save_data(file_path=f‘{output_dir}/doc-topic.csv‘, data=doc_topic_data, columns=doc_topic_columns, index=doc_topic_index) self.save_data(file_path=f"{output_dir}/topic-word-{topic_word_num}.csv", data=topic_word_data, columns=topic_word_columns, index=topic_word_index) if print_doc_topic: print(‘正在输出文档-主题‘) for doc_num, doc_topic_index in zip(index, np.argsort(-doc_topic_matrix, axis=1)): print(f‘{doc_num}:\t{doc_topic_index[:5]}‘) if print_topic_word: print(‘正在输出主题-词‘) for topic_num, topic_word_index in enumerate(np.argsort(-topic_word_matrix, axis=1)): words_list = np.array( self.vocab)[topic_word_index][: 10] print(f‘主题{topic_num}:\t{words_list}‘) @staticmethod def save_data(file_path, data, columns, index): """ 保存数据 """ df = pd.DataFrame(data=data, columns=columns, index=index) df.to_csv(file_path, encoding=‘utf_8_sig‘) print(f‘{file_path}\t保存成功‘) @staticmethod def kl_divergence(p, q): """ 有时也称为相对熵,KL距离。对于两个概率分布P、Q,二者越相似,KL散度越小。 KL散度满足非负性 KL散度是不对称的,交换P、Q的位置将得到不同结果。 :param p: :param q: :return: """ return scipy.stats.entropy(p, q) @staticmethod def js_divergence(p, q): """ JS散度基于KL散度,同样是二者越相似,JS散度越小。 JS散度的取值范围在0-1之间,完全相同时为0 JS散度是对称的 :param p: :param q: :return: """ M = (p + q) / 2 return 0.5 * scipy.stats.entropy(p, M) + 0.5 * scipy.stats.entropy(q, M) @staticmethod def weight_score(doc_topic_matrix, topic_word_matrix): # doc_topic_matrix = np.loadtxt(‘res/doc_topic_matrix.txt‘) # topic_word_matrix = np.loadtxt(‘res/topic_word_matrix.txt‘) # 计算最大平均主题分布概率 max_mean_topic_prob = np.mean(np.max(doc_topic_matrix, axis=1)) # 计算平均主题相似度 topic_cos_sim_matrix = cosine_similarity(X=topic_word_matrix) topic_num = topic_cos_sim_matrix.shape[0] mean_topic_sim = np.sum(np.where(topic_cos_sim_matrix > 0.99, 0, topic_cos_sim_matrix)) / ( topic_num * (topic_num - 1)) # 加权得分 weight_score = max_mean_topic_prob / mean_topic_sim # print(f‘加权得分:{weight_score}‘) return weight_score def plot_image(self, data, title, x_ticks, xlabel, ylabel): """ 画图 """ plt.figure(figsize=(12, 6), dpi=180) plt.plot(list(data.keys()), list(data.values()), ‘#007A99‘) plt.xticks(x_ticks) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) plt.savefig(f‘{self.res_dir}/{title}.png‘, bbox_inches=‘tight‘, pad_inches=0.1) plt.show() def data_preparetion(path, doc_col, index_col=None): """ 数据准备 :param path: 数据路径 :param doc_col: 文档列 :param index_col: 索引列 :return: """ df = pd.read_excel(path) documents = iter(df[doc_col]) index_list = df[index_col] if index_col else df.index return index_list, documents @timeit def main(index, docs, n_topics=10, tfidf=False, max_iter=5, min_topic=5, max_topic=30, learning_offset=50., random_state=0, test_topic_num=False, topic_word_num=30, res_dir=‘res‘): """ 主函数 :param index: 索引 :param docs: 文档 :param n_topics: 指定主题个数 :param tfidf: 是否对文档采用tfidf编码 :param max_iter: 最大迭代次数 :param min_topic: 最小主题个数 前提为test_topic_num=True :param max_topic: 最大主题个数 前提为test_topic_num=True :param learning_offset: 学习率 :param random_state: 随机状态值 :param test_topic_num: 测试主题个数 :param topic_word_num: 主题词矩阵词的个数 :param res_dir: 结果文件夹 :return: """ if not os.path.exists(res_dir): os.mkdir(res_dir) lda = SklearnLDA(corpus=docs, n_topics=n_topics, max_iter=max_iter, tf_idf=tfidf, learning_offset=learning_offset, random_state=random_state, res_dir=res_dir) if test_topic_num: lda.get_topic_num(index=index, max_iter=max_iter, min_topic=min_topic, max_topic=max_topic, learning_offset=learning_offset, random_state=random_state, topic_word_num=topic_word_num) else: lda.train(index=index, save_matrix=True, save_data=True, print_doc_topic=False, print_topic_word=True, topic_word_num=topic_word_num) if __name__ == ‘__main__‘: # 数据准备 index, docs = data_preparetion(path=‘data/山西政策3.xlsx‘, doc_col=‘标题分词‘) # LDA模型指定主题个数范围 main(index=index, docs=docs, test_topic_num=True, tfidf=False, max_iter=50, min_topic=5, max_topic=10, topic_word_num=20, res_dir=‘res/第三阶段‘) # LDA模型指定主题个数 # main(index=index, docs=docs, n_topics=19, tfidf=False, max_iter=50)
topic_evolution.py
# -*- coding: utf-8 -*- ‘‘‘ Datetime: 2019/08/16 author: Zhang Yafei description: colormap https://blog.csdn.net/Mr_Cat123/article/details/78638491 ‘‘‘ import warnings warnings.filterwarnings(action=‘ignore‘, category=UserWarning, module=‘gensim‘) warnings.filterwarnings(action=‘ignore‘, category=UserWarning, module=‘gensim.matutils‘) import pandas as pd import numpy as np import os from gensim.models import Word2Vec import seaborn as sns import matplotlib.pyplot as plt plt.rcParams[‘font.sans-serif‘] = [‘SimHei‘] # plt.figure(figsize=(16, 6), dpi=500) class TopicEvolution(object): def __init__(self, data_path, doc_topic_matrix_path=None, topic_word_csv_path=None): self.data_path = data_path self.topic_word_csv_path = topic_word_csv_path self.doc_topic_matrix_path = doc_topic_matrix_path def topic_intensity_evolution(self, start_year, end_year, topic_num, res_dir=‘res‘, space=1): df = pd.read_excel(self.data_path) # print(df[‘年‘]) doc_topic_matrix = np.loadtxt(self.doc_topic_matrix_path.format(topic_num)) # # 柱状图 x = [f‘topic{num}‘ for num in range(1, topic_num + 1)] y = doc_topic_matrix.mean(axis=0) print(x, np.mean(y)) self.plot_bar(x=x, y=y, path=f‘{res_dir}/{topic_num}/柱状图.png‘) # # # 热图 doc_topic_df = pd.DataFrame(data=doc_topic_matrix) doc_topic_df.index = df[‘年‘] topic_intensity_df = pd.DataFrame(columns=list(range(start_year, end_year, space))) for year in range(start_year, end_year, space): topic_intensity_df[year] = doc_topic_df.loc[year, :].mean() topic_intensity_df.index = [f‘Topic {num}‘ for num in range(1, topic_num + 1)] self.plot_heatmap(data=topic_intensity_df, cmap=‘Reds‘, xlabel=‘年份‘, ylabel=‘主题‘, path=f‘{res_dir}/{topic_num}/热力图.png‘) x = [int(year) for year in range(start_year, end_year, space)] print(x, topic_intensity_df) topic_intensity_df.to_excel(‘res/topic_intensity.xlsx‘) self.plot(x=x, data_list=topic_intensity_df, path=f‘{res_dir}/{topic_num}/折线图.png‘) @staticmethod def plot(x, data_list, path=None): for index in data_list.index.unique(): y = [num for num in data_list.loc[index, :]] # plt.plot(x, y) plt.plot(x, y, "x-", label=f‘主题{index}‘) plt.savefig(path) # plt.legend(loc=‘best‘, labels=[f‘主题{num}‘ for num in range(1, len(data_list.index.unique()+1))]) plt.show() @staticmethod def plot_bar(x, y, path=None): plt.bar(x, y, width=0.5) plt.xticks(range(len(x)), x, rotation=45) plt.axhline(y=np.mean(y), xmin=.05, xmax=.95, ls=‘--‘, color=‘black‘) plt.savefig(path) plt.show() @staticmethod def plot_heatmap(data, cmap, xlabel, ylabel, path=None): if cmap: sns.heatmap(data, cmap=cmap) else: sns.heatmap(data) plt.xticks(rotation=45) plt.xlabel(xlabel) plt.ylabel(ylabel) # plt.title(name) # 保存图片 plt.savefig(path) # 显示图片 plt.show() def extract_keywords_txt(self): df = pd.read_excel(self.data_file) # data_key = pd.read_csv(f‘{data_dir}/data_key.txt‘, delimiter=‘\t‘, encoding=‘gbk‘) # df[‘keywords‘] = data_key.ID.apply(self.add_keywords) # df[‘keywords‘] = df.apply(self.add_keywords, axis=1) # df.to_excel(self.data_file) # for year in range(2004, 2019): # print(year) # year_df = pd.DataFrame(columns=[‘ID‘]) # year_df[‘ID‘] = df.loc[df[‘年‘] == year, ‘keywords‘].str.strip().str.replace(‘ ‘, ‘; ‘) # year_df.reset_index(inplace=True, drop=True) # year_df.to_csv(f‘{data_dir}/{year}.txt‘, sep=‘\t‘) with open(self.keywords_txt, ‘w‘, encoding=‘utf-8‘) as f: for text in df.keywords: f.write(f‘{text}\n‘) @staticmethod def word_replace(word): return word.replace(‘ & ‘, ‘_____‘).replace(‘/‘, ‘___‘).replace(‘, ‘, ‘__‘).replace(‘,‘, ‘__‘).replace(‘ ‘, ‘_‘).replace( ‘-‘, ‘____‘).replace(‘(‘, ‘______‘).replace(‘)‘, ‘______‘) def clac_inter_intimate(self, row, model, keywords): topic_internal_sim_sum = [] for word1 in row: word1 = self.word_replace(word1) if word1 not in keywords: continue for word2 in row: word2 = self.word_replace(word2) if (word2 not in keywords) or (word1 == word2): continue try: topic_internal_sim_sum.append(model.wv.similarity(word1, word2)) except KeyError: continue # print(word1, word2, model.wv.similarity(word1, word2)) return np.mean(topic_internal_sim_sum) def topic_intimate(self, model, topic_num=None): df = pd.read_csv(self.topic_word_csv_path, index_col=0) with open(‘data/vocab.txt‘, encoding=‘utf-8‘) as f: keywords = {word.strip() for word in f if word} topic_inter_intimate = np.mean(df.apply(self.clac_inter_intimate, axis=1, args=(model, keywords))) topic_exter_sim_sum = [] for row1 in df.values.tolist(): for row2 in df.values.tolist(): if row1 == row2: continue topic_exter_sim = [] for word1 in row1: word1 = self.word_replace(word1) if word1 not in keywords: continue for word2 in row2: word2 = self.word_replace(word2) if word2 not in keywords: continue try: topic_exter_sim.append(model.wv.similarity(word1, word2)) except KeyError as e: continue topic_exter_sim_sum.append(np.mean(topic_exter_sim)) # 主题间亲密度 topic_exter_intimate = np.mean(topic_exter_sim_sum) # 主题亲密度 = (主题内亲密度 - 主题间亲密度) / 主题内亲密度 topic_proximity = (topic_inter_intimate - topic_exter_intimate) / topic_inter_intimate print(topic_num, topic_inter_intimate, topic_exter_intimate, topic_proximity) return topic_num, topic_proximity def file_rename(dir_path, start, end): for num in range(start, end): os.rename(f‘res/2004-2018/{dir_path}/{num}/文档-主题.csv‘, f‘res/2004-2018/{dir_path}/{num}/doc-topic.csv‘) # os.rename(f‘res/2004-2018/{dir_path}/{num}/主题-词-30.csv‘, f‘res/2004-2018/{dir_path}/{num}/topic-word-30.csv‘) def plot_image(data, title, x_ticks, xlabel, ylabel, output_dir=None): """ 画图 """ plt.figure(figsize=(12, 6), dpi=180) plt.plot(data.keys(), data.values(), ‘#007A99‘) plt.xticks(x_ticks) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if output_dir: plt.savefig(f‘{output_dir}/{title}.png‘, bbox_inches=‘tight‘, pad_inches=0.1) plt.show() def start_plot(start_year, end_year, data_path, doc_topic_matrix_path, res_dir, topic_num=None, min_topics=None, max_topics=None, space=1): """ 柱状图、折线图、heatmap图 """ if min_topics and max_topics: for n_topics in range(min_topics, max_topics + 1): topic = TopicEvolution(data_path=data_path, doc_topic_matrix_path=doc_topic_matrix_path.format(n_topics)) topic.topic_intensity_evolution(start_year=start_year, end_year=end_year, topic_num=n_topics, res_dir=res_dir, space=space) elif topic_num: topic = TopicEvolution(data_path=data_path, doc_topic_matrix_path=doc_topic_matrix_path) topic.topic_intensity_evolution(start_year=start_year, end_year=end_year, topic_num=topic_num, res_dir=res_dir, space=space) def start_run(model_path, data_path, topic_word_csv_path, min_topics, max_topics, res_dir=None): """ 主题亲密度 """ topic_proximity_dict = {} model = Word2Vec.load(model_path) for n_topics in range(min_topics, max_topics + 1): topic = TopicEvolution(data_path=‘data/data.xlsx‘, topic_word_csv_path=topic_word_csv_path.format(n_topics)) proximity = topic.topic_intimate(topic_num=n_topics, model=model) topic_proximity_dict[n_topics] = proximity # plot_image(data=topic_proximity_dict, x_ticks=list(range(start, end+1)), title=‘topic_proximity‘, xlabel=‘topic num‘, ylabel=‘proximity‘, output_dir=‘res/2004-2018‘) if __name__ == "__main__": topic = TopicEvolution(data_path=‘data/data.xlsx‘) start_plot(min_topics=5, max_topics=30, start_year=1993, end_year=2018, data_path=‘GLP1.xlsx‘, doc_topic_matrix_path=‘res/{}/doc_topic_matrix.txt‘, res_dir=‘res‘, space=5) start_run(model_path=‘model/word2vec.model‘, data_path=‘data/GLP1.xlsx‘, topic_word_csv_path=‘res/{}/topic-word-30.csv‘, min_topics=5, max_topics=6)
经验分享:我都写好了,直接拿去用吧!
表1 LDA模型中字符的含义
字符 |
描述 |
D |
文档数 |
Z |
主题数 |
d文档中的词汇总数 |
|
d文档中第i个词 |
|
d文档中第i个主题 |
|
α |
主题的先验概率分布,的超参数 |
β |
词汇的先验概率分布,的超参数 |
主题z上词语的多项式分布 |
|
文档d上主题的多项式分布 |
1)对每个文档d∈D,根据N~Poission(,生成文档d的词汇数目; 2)对每个文档d∈D,根据~Dir(),得到文档d关于主题多项式分布的参数; 3)对每个主题z∈K,根据~Dir(),得到主题z关于词汇多项式分布的参数; 4)对于文档d的第j个词汇,根据多项分布~Mult(),抽样得到所属主题;根据多项分布~Mult(),抽样得到词汇。
|
LDA模型中生成文档的步骤如下所示:
标签:warning set count tick height icm clear odi 总结
原文地址:https://www.cnblogs.com/zhangyafei/p/13252207.html