标签:define for main success app font ios cpu waitkey
使用bazel编译了tensorflow1.13.1,还差一个demo测试,在网上找了一个例程,但是不全,自己辛苦补全了,供大家参考学习。
#define COMPILER_MSVC #define NOMINMAX #define PLATFORM_WINDOWS // 指定使用tensorflow/core/platform/windows/cpu_info.h #include<iostream> #include<opencv2/opencv.hpp> #include"tensorflow/core/public/session.h" #include "tensorflow/core/platform/env.h" #include <time.h> #include <vector> #include <string.h> using namespace tensorflow; using namespace cv; using std::cout; using std::endl; int main() { const std::string model_path = "frozen_inference_graph.pb";// tensorflow模型文件,注意不能含有中文 const std::string image_path = "image1.jpg"; // 待inference的图片grace_hopper.jpg // 设置输入图像 cv::Mat img = cv::imread(image_path); //cv::cvtColor(img, img, cv::COLOR_BGR2RGB); int height = img.rows; int width = img.cols; int depth = img.channels(); // 取图像数据,赋给tensorflow支持的Tensor变量中 tensorflow::Tensor input_tensor(DT_UINT8, TensorShape({ 1, height, width, depth })); const uint8* source_data = img.data; auto input_tensor_mapped = input_tensor.tensor<uint8, 4>(); for (int i = 0; i < height; i++) { const uint8* source_row = source_data + (i * width * depth); for (int j = 0; j < width; j++) { const uint8* source_pixel = source_row + (j * depth); for (int c = 0; c < depth; c++) { const uint8* source_value = source_pixel + c; input_tensor_mapped(0, i, j, c) = *source_value; } } } // 初始化tensorflow session Session* session; Status status = NewSession(SessionOptions(), &session); if (!status.ok()) { std::cerr << status.ToString() << endl; return -1; } else { cout << "Session created successfully" << endl; } // 读取二进制的模型文件到graph中 tensorflow::GraphDef graph_def; status = ReadBinaryProto(Env::Default(), model_path, &graph_def); if (!status.ok()) { std::cerr << status.ToString() << endl; return -1; } else { cout << "Load graph protobuf successfully" << endl; } // 将graph加载到session status = session->Create(graph_def); if (!status.ok()) { std::cerr << status.ToString() << endl; return -1; } else { cout << "Add graph to session successfully" << endl; } // 输入inputs,“ x_input”是我在模型中定义的输入数据名称 std::vector<std::pair<std::string, tensorflow::Tensor>> inputs = { { "image_tensor:0", input_tensor }, }; // 输出outputs std::vector<tensorflow::Tensor> outputs; //批处理识别 double start = clock(); std::vector<std::string> output_nodes; output_nodes.push_back("num_detections"); output_nodes.push_back("detection_boxes"); output_nodes.push_back("detection_scores"); output_nodes.push_back("detection_classes"); // 运行会话,最终结果保存在outputs中 status = session->Run(inputs, { output_nodes }, {}, &outputs); if (!status.ok()) { std::cerr << status.ToString() << endl; return -1; } else { cout << "Run session successfully" << endl; } std::vector<float> vecfldata; std::vector<float> vecflprob; for (int i = 0; i < outputs.size(); i++) { Tensor t = outputs[i]; // 从节点取出第一个输出 "node:0" cout << t.dtype() << std::endl; TensorShape shape = t.shape(); int dim = shape.dims(); cout << dim << std::endl; cout << shape.num_elements() << std::endl; std::vector<int> vecsize; for (int d = 0; d < shape.dims(); d++) { int size = shape.dim_size(d); cout << size << endl; vecsize.push_back(size); } if (dim == 3) { auto tmap = t.tensor<float, 3>();//这里<float, 3>的3是根据dim=3来的 for (int l = 0; l < vecsize[0]; l++) { for (int m =0; m < vecsize[1]; m++) { for (int n =0; n<vecsize[2];n++) { vecfldata.push_back(tmap(l,m,n)); } } } } if (i==2) { auto tmap = t.tensor<float, 2>(); for (int p = 0; p < shape.dim_size(1); p++) { vecflprob.push_back(tmap( 0, p)); } } } for (int k = 0; k < 2; k++) { int lty = height*vecfldata[4 * k]; int ltx = width*vecfldata[4 * k + 1]; int rby = height*vecfldata[4 * k + 2]; int rbx = width*vecfldata[4 * k + 3]; cv::rectangle(img, cv::Point(ltx, lty), cv::Point(rbx, rby), Scalar(255, 0, 0)); cv::putText(img, std::to_string(vecflprob[k]), Point(ltx, lty), FONT_HERSHEY_SCRIPT_SIMPLEX, 1.0, Scalar(12, 255, 200), 1, 8); } std::cout << "outputs[0] num_detections" << outputs[0].DebugString() << std::endl; std::cout << "outputs[1] detection_boxes" << outputs[1].DebugString() << std::endl; std::cout << "outputs[2] detection_scores" << outputs[2].DebugString() << std::endl; std::cout << "outputs[3] detection_classes" << outputs[3].DebugString() << std::endl; double finish = clock(); double duration = (double)(finish - start) / CLOCKS_PER_SEC; cout << "spend time:" << duration << endl; cv::imshow("image", img); cv::waitKey(); return 0; }
运行结果:
标签:define for main success app font ios cpu waitkey
原文地址:https://www.cnblogs.com/juluwangshier/p/13280965.html