标签:bp神经网络
前一段时间做了一个数字识别的小系统,基于BP神经网络算法的,用MFC做的交互。在实现过程中也试着去找一些源码,总体上来讲,这些源码的可移植性都不好,多数将交互部分和核心算法代码杂糅在一起,这样不仅代码阅读困难,而且重要的是核心算法不具备可移植性。设计模式,设计模式的重要性啊!于是自己将BP神经网络的核心算法用标准C++实现,这样可移植性就有保证的,然后在核心算法上实现基于不同GUI库的交互(MFC,QT)是能很快的搭建好系统的。下面边介绍BP算法的原理(请看《数字图像处理与机器视觉》非常适合做工程的伙伴),边给出代码的实现,最后给出基于核心算法构建交互的例子。
人工神经网络的理论基础
1.感知器
感知器是一种具有简单的两种输出的人工神经元,如下图所示。
2.线性单元
只有1和-1两种输出的感知器实际上限制了其处理和分类的能力,下图是一种简单的推广,即不带阈值的感知器。
3.误差准则
使用的是一个常用的误差度量标准,平方误差准则。公式如下。
其中D为训练样本,td为训练观测值d的训练输出,ot为观测值d的实际观测值。如果是个凸函数就好了(搞数学的,一听到凸函数就很高兴,呵呵!),但还是可以用梯度下降的方法求其参数w。
4.梯度下降推导
在高等数学中梯度的概念实际上就是一个方向向量,也就是方向导数最大的方向,也就是说沿着这个方向,函数值的变化速度最快。我们这里是做梯度下降,那么就是沿着梯度的负方向更新参数w的值来快速达到E函数值的最小了。这样梯度下降算法的步骤基本如下:
1) 初始化参数w(随机,或其它方法)。
2) 求梯度。
3) 沿梯度方向更新参数w,可以添加一个学习率,也就是按多大的步子下降。
4) 重复1),2),3)直到达到设置的条件(迭代次数,或者E的减小量小于某个阈值)。
梯度的表达式如下:
那么如何求梯度呢?就是复合函数求导的过程,如下:
其中xid为样本中第d个观测值对应的一个输入分量xi。这样,训练过程中参数w的更新表达式如下(其中添加了一个学习率,也就是下降的步长):
于是参数wi的更新增量为:
对于学习率选择的问题,一般较小是能够保证收敛的,看下图吧。
5.增量梯度下降
对于4中的梯度下降算法,其缺点是有时收敛速度慢,如果在误差曲面上存在多个局部极小值,算法不能保证能够找到全局极小值。为了改善这些缺点,提出了增量梯度下降算法。增量梯度下降,与4中的梯度下降的不同之处在于,4中对参数w的更新是根据整个样本中的观测值的误差来计算的,而增量梯度下降算法是根据样本中单个观测值的误差来计算w的更新。
6.梯度检验
这是一个比较实用的内容,如何确定自己的代码就一定没有错呢?因为在求梯度的时候是很容易犯错误的,我就犯过了,嗨,调了两天才找出来,一个数组下表写错了,要是早一点看看斯坦福大学的深度学习基础教程就好了,这里只是截图一部分,有时间去仔细看看吧。
多层神经网络
好了有了前面的基础,我们现在就可以进行实战了,构造多层神经网络。
1.Sigmoid神经元
Sigmoid神经元可由下图表示:
2.神经网络层
一个三层的BP神经网络可由下图表示:
3.神经元和神经网络层的标准C++定义
由2中的三层BP神经网络的示意图中可以看出,隐藏层和输出层是具有类似的结构的。神经元和神经网络层的定义如下:
//////////////////////////////////////////////////////// // Neuron.h #ifndef __SNEURON_H__ #define __SNEURON_H__ #define NEED_MOMENTUM //if you want to addmomentum, remove the annotation #define MOMENTUM 0.6 //momentumcoefficient, works on when defined NEED_MOMENTUM typedef double WEIGHT_TYPE; // definedatatype of the weight struct SNeuron{//neuron cell /******Data*******/ intm_nInput; //number of inputs WEIGHT_TYPE*m_pWeights; //weights array of inputs #ifdef NEED_MOMENTUM WEIGHT_TYPE*m_pPrevUpdate; //record last weights update when momentum is needed #endif doublem_dActivation; //output value, through Sigmoid function doublem_dError; //error value of neuron /********Functions*************/ voidInit(int nInput){ m_nInput= nInput + 1; //add a side term,number of inputs is actual number of actualinputs plus 1 m_pWeights= new WEIGHT_TYPE[m_nInput];//allocate for weights array #ifdef NEED_MOMENTUM m_pPrevUpdate= new WEIGHT_TYPE[m_nInput];//allocate for the last weights array #endif m_dActivation= 0; //output value, through SIgmoid function m_dError= 0; //error value of neuron } ~SNeuron(){ //releasememory delete[]m_pWeights; #ifdef NEED_MOMENTUM delete[]m_pPrevUpdate; #endif } };//SNeuron struct SNeuronLayer{//neuron layer /************Data**************/ intm_nNeuron; //Neuron number of this layer SNeuron*m_pNeurons; //Neurons array /*************Functions***************/ SNeuronLayer(intnNeuron, int nInputsPerNeuron){ m_nNeuron= nNeuron; m_pNeurons= new SNeuron[nNeuron]; //allocatememory for nNeuron neurons for(inti=0; i<nNeuron; i++){ m_pNeurons[i].Init(nInputsPerNeuron); //initialize neuron } } ~SNeuronLayer(){ delete[]m_pNeurons; //release neurons array } };//SNeuronLayer #endif//__SNEURON_H__
代码中定义了一个NEED_MOMENTUM,它是用来解决局部极小值的问题的,其含义是本次权重的更新是依赖于上一次权重更新的。另外还有一种解决局部极小值问题的方法是,将w初始化为接近于0的随机数。
4.反向传播(BP)算法
前面虽然有了神经元和神经网络层的定义,但要构造一个三层的BP神经网络之前,还要搞清楚BP算法是如何来学习神经网络的参数的。它仍采用梯度下降算法,但不同的是这里的输出是整个网络的输出,而不再是一个单元的输出,所有对误差函数E重新定义如下:
其中outputs是网络中输出层单元的集合,tkd,okd是训练样本中第d个观测值在第k个输出单元的而输出值。
1)BP算法推导
先引入下列符号:
增量梯度下降算法中,对于每个训练样本中第d个观测的一个输入权重wij的增量如下表示:
其中Ed是训练样本中第d个观测的误差,通过对输出层所有单元的求和得到:
这里说明一下,神经网络输出层的所有单元联合一起表示一个样本观测的训练值的。假设样本观测值为5种,即5种类别,那么先验训练数据的类别表示为:1,0,0,0,0;0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1。这样在对神经网络训练时,我们的训练输出值的表示也就是类似的,当然基于神经元的结构表示,我们也可以将先验训练数据的类别表示中的1换成0.9等。
下面我们就要求梯度了(要分层求解,输出层,隐藏层),梯度向量中的各元素求解如下:
1)当单元j是一个输出单元时:
其中:
于是得到:
2)当单元j是一个隐藏层单元时,有如下推导:
5.标准C++构建三层BP神经网络
该神经网络提供了重要的两个接口。一个是一次训练训练接口TrainingEpoch,可用于上层算法构建训练函数时调用;另一个是计算给定一个输入神经网络的输出接口CalculateOutput,它在一次训练函数中被调用,更重要的是,在上层算法中构建识别函数调用。
头文件:
// NeuralNet.h: interface for theCNeuralNet class. // ////////////////////////////////////////////////////////////////////// #ifndef __NEURALNET_H__ #define __NEURALNET_H__ #include <vector> #include <math.h> #include "Neuron.h" using namespace std; typedef vector<double> iovector; #define BIAS 1 //bias term‘s coefficient w0 /*************Random functions initializingweights*************/ #define WEIGHT_FACTOR 0.1 //used to confineinitial weights /*Return a random float between 0 to 1*/ inline double RandFloat(){ return(rand())/(RAND_MAX+1.0); } /*Return a random float between -1 to 1*/ inline double RandomClamped(){ returnWEIGHT_FACTOR*(RandFloat() - RandFloat()); } class CNeuralNet{ private: /*Initialparameters, can not be changed throghout the whole training.*/ intm_nInput; //number of inputs intm_nOutput; //number of outputs intm_nNeuronsPerLyr; //unit number of hidden layer intm_nHiddenLayer; //hidden layer, not including the output layer /***Dinamicparameters****/ doublem_dErrorSum; //one epoch‘s sum-error SNeuronLayer*m_pHiddenLyr; //hidden layer SNeuronLayer*m_pOutLyr; //output layer public: /* *Constructorand Destructor. */ CNeuralNet(intnInput, int nOutput, int nNeuronsPerLyr, int nHiddenLayer); ~CNeuralNet(); /* *Computeoutput of network, feedforward. */ bool CalculateOutput(vector<double> input,vector<double>& output); /* *Trainingan Epoch, backward adjustment. */ bool TrainingEpoch(vector<iovector>& SetIn,vector<iovector>& SetOut, double LearningRate); /* *Geterror-sum. */ doubleGetErrorSum(){ return m_dErrorSum; } SNeuronLayer*GetHiddenLyr(){ return m_pHiddenLyr; } SNeuronLayer*GetOutLyr(){ return m_pOutLyr; } private: /* *Biuldnetwork, allocate memory for each layer. */ voidCreateNetwork(); /* *Initializenetwork. */ voidInitializeNetwork(); /* *Sigmoidencourage fuction. */ doubleSigmoid(double netinput){ doubleresponse = 1.0; //control steep degreeof sigmoid function return(1 / ( 1 + exp(-netinput / response) ) ); } }; #endif //__NEURALNET_H__
实现文件:
// NeuralNet.cpp: implementation of theCNeuralNet class. // ////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include "NeuralNet.h" #include <assert.h> CNeuralNet::CNeuralNet(int nInput, intnOutput, int nNeuronsPerLyr, int nHiddenLayer){ assert(nInput>0 && nOutput>0 && nNeuronsPerLyr>0 &&nHiddenLayer>0 ); m_nInput= nInput; m_nOutput= nOutput; m_nNeuronsPerLyr= nNeuronsPerLyr; if(nHiddenLayer!= 1) m_nHiddenLayer= 1; else m_nHiddenLayer= nHiddenLayer; //temporarily surpport only one hidden layer m_pHiddenLyr= NULL; m_pOutLyr= NULL; CreateNetwork(); //allocate for each layer InitializeNetwork(); //initialize the whole network } CNeuralNet::~CNeuralNet(){ if(m_pHiddenLyr!= NULL) deletem_pHiddenLyr; if(m_pOutLyr!= NULL) deletem_pOutLyr; } void CNeuralNet::CreateNetwork(){ m_pHiddenLyr= new SNeuronLayer(m_nNeuronsPerLyr, m_nInput); m_pOutLyr= new SNeuronLayer(m_nOutput, m_nNeuronsPerLyr); } void CNeuralNet::InitializeNetwork(){ inti, j; //variables for loop /*usepresent time as random seed, so every time runs this programm can producedifferent random sequence*/ //srand((unsigned)time(NULL) ); /*initializehidden layer‘s weights*/ for(i=0;i<m_pHiddenLyr->m_nNeuron; i++){ for(j=0;j<m_pHiddenLyr->m_pNeurons[i].m_nInput; j++){ m_pHiddenLyr->m_pNeurons[i].m_pWeights[j]= RandomClamped(); #ifdefNEED_MOMENTUM /*whenthe first epoch train started, there is no previous weights update*/ m_pHiddenLyr->m_pNeurons[i].m_pPrevUpdate[j]= 0; #endif } } /*initializeoutput layer‘s weights*/ for(i=0;i<m_pOutLyr->m_nNeuron; i++){ for(intj=0; j<m_pOutLyr->m_pNeurons[i].m_nInput; j++){ m_pOutLyr->m_pNeurons[i].m_pWeights[j]= RandomClamped(); #ifdefNEED_MOMENTUM /*whenthe first epoch train started, there is no previous weights update*/ m_pOutLyr->m_pNeurons[i].m_pPrevUpdate[j]= 0; #endif } } m_dErrorSum= 9999.0; //initialize a large trainingerror, it will be decreasing with training } boolCNeuralNet::CalculateOutput(vector<double> input,vector<double>& output){ if(input.size()!= m_nInput){ //input feature vector‘s dimention not equals to input of network returnfalse; } inti, j; doublenInputSum; //sum term /*computehidden layer output*/ for(i=0;i<m_pHiddenLyr->m_nNeuron; i++){ nInputSum= 0; for(j=0;j<m_pHiddenLyr->m_pNeurons[i].m_nInput-1; j++){ nInputSum+= m_pHiddenLyr->m_pNeurons[i].m_pWeights[j] * input[j]; } /*plusbias term*/ nInputSum+= m_pHiddenLyr->m_pNeurons[i].m_pWeights[j] * BIAS; /*computesigmoid fuction‘s output*/ m_pHiddenLyr->m_pNeurons[i].m_dActivation= Sigmoid(nInputSum); } /*computeoutput layer‘s output*/ for(i=0;i<m_pOutLyr->m_nNeuron; i++){ nInputSum= 0; for(j=0;j<m_pOutLyr->m_pNeurons[i].m_nInput-1; j++){ nInputSum+= m_pOutLyr->m_pNeurons[i].m_pWeights[j] *m_pHiddenLyr->m_pNeurons[j].m_dActivation; } /*plusbias term*/ nInputSum+= m_pOutLyr->m_pNeurons[i].m_pWeights[j] * BIAS; /*computesigmoid fuction‘s output*/ m_pOutLyr->m_pNeurons[i].m_dActivation= Sigmoid(nInputSum); /*saveit to the output vector*/ output.push_back(m_pOutLyr->m_pNeurons[i].m_dActivation); } returntrue; } bool CNeuralNet::TrainingEpoch(vector<iovector>&SetIn, vector<iovector>& SetOut, double LearningRate){ inti, j, k; doubleWeightUpdate; //weight‘s update value doubleerr; //error term /*increment‘sgradient decrease(update weights according to each training sample)*/ m_dErrorSum= 0; // sum of error term for(i=0;i<SetIn.size(); i++){ iovectorvecOutputs; /*forwardlyspread inputs through network*/ if(!CalculateOutput(SetIn[i],vecOutputs)){ returnfalse; } /*updatethe output layer‘s weights*/ for(j=0;j<m_pOutLyr->m_nNeuron; j++){ /*computeerror term*/ err= ((double)SetOut[i][j]-vecOutputs[j])*vecOutputs[j]*(1-vecOutputs[j]); m_pOutLyr->m_pNeurons[j].m_dError= err; //record this unit‘s error /*updatesum error*/ m_dErrorSum+= ((double)SetOut[i][j] - vecOutputs[j]) * ((double)SetOut[i][j] -vecOutputs[j]); /*updateeach input‘s weight*/ for(k=0;k<m_pOutLyr->m_pNeurons[j].m_nInput-1; k++){ WeightUpdate= err * LearningRate * m_pHiddenLyr->m_pNeurons[k].m_dActivation; #ifdef NEED_MOMENTUM /*updateweights with momentum*/ m_pOutLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate+ m_pOutLyr->m_pNeurons[j].m_pPrevUpdate[k] * MOMENTUM; m_pOutLyr->m_pNeurons[j].m_pPrevUpdate[k]= WeightUpdate; #else /*updateunit weights*/ m_pOutLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate; #endif } /*biasupdate volume*/ WeightUpdate= err * LearningRate * BIAS; #ifdef NEED_MOMENTUM /*updatebias with momentum*/ m_pOutLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate+ m_pOutLyr->m_pNeurons[j].m_pPrevUpdate[k] * MOMENTUM; m_pOutLyr->m_pNeurons[j].m_pPrevUpdate[k]= WeightUpdate; #else /*updatebias*/ m_pOutLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate; #endif }//for out layer /*updatethe hidden layer‘s weights*/ for(j=0;j<m_pHiddenLyr->m_nNeuron; j++){ err= 0; for(intk=0; k<m_pOutLyr->m_nNeuron; k++){ err+= m_pOutLyr->m_pNeurons[k].m_dError *m_pOutLyr->m_pNeurons[k].m_pWeights[j]; } err*= m_pHiddenLyr->m_pNeurons[j].m_dActivation * (1 -m_pHiddenLyr->m_pNeurons[j].m_dActivation); m_pHiddenLyr->m_pNeurons[j].m_dError= err; //record this unit‘s error /*updateeach input‘s weight*/ for(k=0;k<m_pHiddenLyr->m_pNeurons[j].m_nInput-1; k++){ WeightUpdate= err * LearningRate * SetIn[i][k]; #ifdef NEED_MOMENTUM /*updateweights with momentum*/ m_pHiddenLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate+ m_pHiddenLyr->m_pNeurons[j].m_pPrevUpdate[k] * MOMENTUM; m_pHiddenLyr->m_pNeurons[j].m_pPrevUpdate[k]= WeightUpdate; #else m_pHiddenLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate; #endif } /*biasupdate volume*/ WeightUpdate= err * LearningRate * BIAS; #ifdef NEED_MOMENTUM /*updatebias with momentum*/ m_pHiddenLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate+ m_pHiddenLyr->m_pNeurons[j].m_pPrevUpdate[k] * MOMENTUM; m_pHiddenLyr->m_pNeurons[j].m_pPrevUpdate[k]= WeightUpdate; #else /*updatebias*/ m_pHiddenLyr->m_pNeurons[j].m_pWeights[k]+= WeightUpdate; #endif }//forhidden layer }//forone epoch returntrue; }
6.基于BP核心算法构建MVC框架
到此为止我们的核心算法已经构建出来了,再应用两次Strategy 设计模式,我们就很容易构建出一个MVC框架(see also:http://remyspot.blog.51cto.com/8218746/1574484)。下面给出一个应用Strategy设计模式基于CNeuralNet类构建一个Controller,在Controller中我们就可以开始依赖特定的GUI库了。下面的这个Controller是不能直接使用的,你所要做的是参考该代码(重点参看
boolTrain(vector<iovector>& SetIn, vector<iovector>& SetOut);
bool SaveTrainResultToFile(const char* lpszFileName, boolbCreate);
bool LoadTrainResultFromFile(const char* lpszFileName, DWORDdwStartPos);
int Recognize(CString strPathName, CRect rt, double&dConfidence);
接口的实现), 然后基于前面的核心BP算构建你自己的Controller,然后在该Controller的上层实现你自己的交互功能。
说明一下,Train接口中的SetIn是训练数据的特征,SetOut是训练数据的类别表示。
头文件:
#ifndef __OPERATEONNEURALNET_H__ #define __OPERATEONNEURALNET_H__ #include "NeuralNet.h" #define NEURALNET_VERSION 1.0 #define RESAMPLE_LEN 4 class COperateOnNeuralNet{ private: /*network*/ CNeuralNet*m_oNetWork; /*network‘sparameter*/ intm_nInput; intm_nOutput; intm_nNeuronsPerLyr; intm_nHiddenLayer; /*trainingconfiguration*/ intm_nMaxEpoch; // max training epoch times doublem_dMinError; // error threshold doublem_dLearningRate; /*dinamiccurrent parameter*/ intm_nEpochs; doublem_dErr; //mean error of oneepoch(m_dErrorSum/(num-of-samples * num-of-output)) boolm_bStop; //control whether stop or not during the training vector<double> m_vecError; //record each epoch‘straining error, used for drawing error curve public: COperateOnNeuralNet(); ~COperateOnNeuralNet(); voidSetNetWorkParameter(int nInput, int nOutput, int nNeuronsPerLyr, intnHiddenLayer); boolCreatNetWork(); voidSetTrainConfiguration(int nMaxEpoch, double dMinError, double dLearningRate); voidSetStopFlag(bool bStop) { m_bStop = bStop; } doubleGetError(){ return m_dErr; } intGetEpoch(){ return m_nEpochs; } intGetNumNeuronsPerLyr(){ return m_nNeuronsPerLyr; } boolTrain(vector<iovector>& SetIn, vector<iovector>& SetOut); bool SaveTrainResultToFile(const char* lpszFileName, boolbCreate); bool LoadTrainResultFromFile(const char* lpszFileName, DWORDdwStartPos); int Recognize(CString strPathName, CRect rt, double&dConfidence); }; /* * Can be used when saving or readingtraining result. */ struct NEURALNET_HEADER{ DWORDdwVersion; //version imformation /*initialparameters*/ intm_nInput; //number of inputs intm_nOutput; //number of outputs intm_nNeuronsPerLyr; //unit number of hidden layer intm_nHiddenLayer; //hidden layer, not including the output layer /*trainingconfiguration*/ intm_nMaxEpoch; // max training epoch times doublem_dMinError; // error threshold doublem_dLearningRate; /*dinamiccurrent parameter*/ intm_nEpochs; doublem_dErr; //mean error of oneepoch(m_dErrorSum/(num-of-samples * num-of-output)) }; #endif //__OPERATEONNEURALNET_H__
实现文件:
// OperateOnNeuralNet.cpp: implementationof the COperateOnNeuralNet class. // ////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include "MyDigitRec.h" #include "OperateOnNeuralNet.h" #include "Img.h" #include <assert.h> /* *Handle message during waiting. */ void WaitForIdle() { MSGmsg; while(::PeekMessage(&msg,NULL, 0, 0, PM_REMOVE)) { ::TranslateMessage(&msg); ::DispatchMessage(&msg); } } COperateOnNeuralNet::COperateOnNeuralNet(){ m_nInput= 0; m_nOutput= 0; m_nNeuronsPerLyr= 0; m_nHiddenLayer= 0; m_nMaxEpoch= 0; m_dMinError= 0; m_dLearningRate= 0; m_oNetWork= 0; m_nEpochs= 0; m_dErr= 0; m_bStop= false; } COperateOnNeuralNet::~COperateOnNeuralNet(){ if(m_oNetWork) deletem_oNetWork; } voidCOperateOnNeuralNet::SetNetWorkParameter(int nInput, int nOutput, intnNeuronsPerLyr, int nHiddenLayer){ assert(nInput>0 && nOutput>0 && nNeuronsPerLyr>0 &&nHiddenLayer>0 ); m_nInput= nInput; m_nOutput= nOutput; m_nNeuronsPerLyr= nNeuronsPerLyr; m_nHiddenLayer= nHiddenLayer; } bool COperateOnNeuralNet::CreatNetWork(){ assert(m_nInput>0 && m_nOutput>0 && m_nNeuronsPerLyr>0&& m_nHiddenLayer>0 ); m_oNetWork= new CNeuralNet(m_nInput, m_nOutput, m_nNeuronsPerLyr, m_nHiddenLayer); if(m_oNetWork) returntrue; else returnfalse; } voidCOperateOnNeuralNet::SetTrainConfiguration(int nMaxEpoch, double dMinError,double dLearningRate){ assert(nMaxEpoch>0&& !(dMinError<0) && dLearningRate!=0); m_nMaxEpoch= nMaxEpoch; m_dMinError= dMinError; m_dLearningRate= dLearningRate; } boolCOperateOnNeuralNet::Train(vector<iovector>& SetIn, vector<iovector>&SetOut){ m_bStop= false; //no stop during training CStringstrOutMsg; do{ /*trainone epoch*/ if(!m_oNetWork->TrainingEpoch(SetIn, SetOut, m_dLearningRate) ){ strOutMsg.Format("Erroroccured at training %dth epoch!",m_nEpochs+1); AfxMessageBox(strOutMsg); returnfalse; }else{ m_nEpochs++; } /*computemean error of one epoch(m_dErrorSum/(num-of-samples * num-of-output))*/ intsum = m_oNetWork->GetErrorSum(); m_dErr= m_oNetWork->GetErrorSum() / ( m_nOutput * SetIn.size() ); m_vecError.push_back(m_dErr); if(m_dErr< m_dMinError){ break; } /*stopin loop to chech wether user‘s action made or message sent, mostly for changem_bStop */ WaitForIdle(); if(m_bStop){ break; } }while(--m_nMaxEpoch> 0); returntrue; } boolCOperateOnNeuralNet::SaveTrainResultToFile(const char* lpszFileName, boolbCreate){ CFilefile; if(bCreate){ if(!file.Open(lpszFileName,CFile::modeWrite|CFile::modeCreate)) returnfalse; }else{ if(!file.Open(lpszFileName,CFile::modeWrite)) returnfalse; file.SeekToEnd(); //add to end of file } /*createnetwork head information*/ /*initialparameter*/ NEURALNET_HEADERheader = {0}; header.dwVersion= NEURALNET_VERSION; header.m_nInput= m_nInput; header.m_nOutput= m_nOutput; header.m_nNeuronsPerLyr= m_nNeuronsPerLyr; header.m_nHiddenLayer= m_nHiddenLayer; /*trainingconfiguration*/ header.m_nMaxEpoch= m_nMaxEpoch; header.m_dMinError= m_dMinError; header.m_dLearningRate= m_dLearningRate; /*dinamiccurrent parameter*/ header.m_nEpochs= m_nEpochs; header.m_dErr= m_dErr; file.Write(&header,sizeof(header)); /*writeweight information to file*/ inti, j; /*hiddenlayer weight*/ for(i=0;i<m_oNetWork->GetHiddenLyr()->m_nNeuron; i++){ file.Write(&m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dActivation, sizeof(m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dActivation)); file.Write(&m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dError, sizeof(m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dError)); for(j=0;j<m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_nInput; j++){ file.Write(&m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_pWeights[j], sizeof(m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_pWeights[j])); } } /*outputlayer weight*/ for(i=0;i<m_oNetWork->GetOutLyr()->m_nNeuron; i++){ file.Write(&m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dActivation, sizeof(m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dActivation)); file.Write(&m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dError, sizeof(m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dError)); for(j=0;j<m_oNetWork->GetOutLyr()->m_pNeurons[i].m_nInput; j++){ file.Write(&m_oNetWork->GetOutLyr()->m_pNeurons[i].m_pWeights[j], sizeof(m_oNetWork->GetOutLyr()->m_pNeurons[i].m_pWeights[j])); } } file.Close(); returntrue; } boolCOperateOnNeuralNet::LoadTrainResultFromFile(const char* lpszFileName, DWORDdwStartPos){ CFilefile; if(!file.Open(lpszFileName,CFile::modeRead)){ returnfalse; } file.Seek(dwStartPos,CFile::begin); //point to dwStartPos /*readin NeuralNet_Head infomation*/ NEURALNET_HEADERheader = {0}; if(file.Read(&header, sizeof(header)) != sizeof(header) ){ returnfalse; } /*chechversion*/ if(header.dwVersion!= NEURALNET_VERSION){ returnfalse; } /*checkbasic NeuralNet‘s structure*/ if(header.m_nInput!= m_nInput ||header.m_nOutput != m_nOutput ||header.m_nNeuronsPerLyr != m_nNeuronsPerLyr ||header.m_nHiddenLayer != m_nHiddenLayer ||header.m_nMaxEpoch != m_nMaxEpoch ||header.m_dMinError != m_dMinError ||header.m_dLearningRate != m_dLearningRate ){ returnfalse; } /*dynamicparameters*/ m_nEpochs= header.m_nEpochs; //update trainingepochs m_dErr= header.m_dErr; //update training error /*readin NetWork‘s weights*/ inti,j; /*readin hidden layer weights*/ for(i=0;i<m_oNetWork->GetHiddenLyr()->m_nNeuron; i++){ file.Read(&m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dActivation, sizeof(m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dActivation)); file.Read(&m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dError, sizeof(m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_dError)); for(j=0;j<m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_nInput; j++){ file.Read(&m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_pWeights[j], sizeof(m_oNetWork->GetHiddenLyr()->m_pNeurons[i].m_pWeights[j])); } } /*readin out layer weights*/ for(i=0;i<m_oNetWork->GetOutLyr()->m_nNeuron; i++){ file.Read(&m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dActivation, sizeof(m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dActivation)); file.Read(&m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dError, sizeof(m_oNetWork->GetOutLyr()->m_pNeurons[i].m_dError)); for(j=0;j<m_oNetWork->GetOutLyr()->m_pNeurons[i].m_nInput; j++){ file.Read(&m_oNetWork->GetOutLyr()->m_pNeurons[i].m_pWeights[j], sizeof(m_oNetWork->GetOutLyr()->m_pNeurons[i].m_pWeights[j])); } } returntrue; } int COperateOnNeuralNet::Recognize(CStringstrPathName, CRect rt, double &dConfidence){ intnBestMatch; //category number doubledMaxOut1 = 0; //max output doubledMaxOut2 = 0; //second max output CImggray; if(!gray.AttachFromFile(strPathName)){ return-1; } /*convert the picture waitiong for being recognized to vector*/ vector<double>vecToRec; for(intj=rt.top; j<rt.bottom; j+= RESAMPLE_LEN){ for(inti=rt.left; i<rt.right; i+=RESAMPLE_LEN){ intnGray = 0; for(intmm=j; mm<j+RESAMPLE_LEN; mm++){ for(intnn=i; nn<i+RESAMPLE_LEN; nn++) nGray+= gray.GetGray(nn, mm); } nGray/= RESAMPLE_LEN*RESAMPLE_LEN; vecToRec.push_back(nGray/255.0); } } /*computethe output result*/ vector<double>outputs; if(!m_oNetWork->CalculateOutput(vecToRec,outputs)){ AfxMessageBox("Recfailed!"); return-1; } /*findthe max output unit, and its unit number is the category number*/ nBestMatch= 0; for(intk=0; k<outputs.size(); k++){ if(outputs[k]> dMaxOut1){ dMaxOut2= dMaxOut1; dMaxOut1= outputs[k]; nBestMatch= k; } } dConfidence= dMaxOut1 - dMaxOut2; //compute beliefdegree returnnBestMatch; }
本文出自 “Remys” 博客,谢绝转载!
标签:bp神经网络
原文地址:http://remyspot.blog.51cto.com/8218746/1575156