标签:like str blog temp 百分号 city 左右 creat warnings
1.创建索引时会将数据重新进行排序
2.创建索引会占用磁盘空间,所以索引不是越多越好
3.在同一列上避免创建多种索引
4.避免在数据很长的字段上创建索引,如果要创建就创建前缀索引
# 根据前四个字符创建前缀索引
mysql> alter table test add index index_key(name(4))
mysql> create database xiangqing;
mysql> create table xiangqin(id int,name varchar(20),gender enum(‘m‘,‘f‘),age tinyint,money int,height int,weight int,looks tinyint);
mysql> insert xiangqin values(1,‘qiudao‘,‘m‘,38,-200000,120,130,‘10‘),(2,‘dilireba‘,‘f‘,18,400000,180,100,‘60‘),(3,‘cxk‘,‘m‘,28,100000,170,120,‘440‘),(4,‘fbb‘,‘f‘,18,1000000,165,85,‘90‘);
# 创建联合索引
mysql> alter table xiangqin add index lh_key(money,gender,age,looks);
# 联合索引使用三种情况
1.部分走索引 money,gender,age
2.全部走索引 money,gender,age,looks
3.不走索引 gender,age
1.explain语法
explain + DQL语句
mysql> explain select * from city where countrycode =‘CHN‘ or countrycode =‘USA‘;
#查询中国和美国的数据
mysql> select * from city where countrycode =‘CHN‘ or countrycode =‘USA‘;
mysql> select * from city where countrycode in (‘CHN‘,‘USA‘);
mysql> select * from city where countrycode = ‘CHN‘ union all select * from city where countrycode = ‘USA‘;
Extra(扩展)
Using temporary 使用group by大概率出现
Using filesort 使用了order by大概率出现
Using join buffer 使用join on大概率出现
#一般与聚合索引一起使用
#建表
mysql> create table jixiao(id int,name varchar(20) charset utf8,jixiao int,product varchar(10) charset utf8);
Query OK, 0 rows affected (0.03 sec)
# 插入数据
mysql> insert jixiao values(1,‘qiu‘,‘1000000‘,‘房地产‘),(2,‘niu‘,‘10000‘,‘房地产‘),(3,‘peng‘,‘100000‘,‘汽车‘),(4,‘qian‘,‘200000‘,‘ 汽车‘);
# 查询不同行业绩效最高的人
mysql> select name,sum(jixiao),product from jixiao group by product;
+------------+-------------+-----------+
| name | sum(jixiao) | product |
+------------+-------------+-----------+
| qiu | 1010000 | 房地产 |
| peng | 300000 | 汽车 |
+------------+-------------+-----------+
2 rows in set (0.00 sec)
# 查询房地产行业绩效最高的人
mysql> select name,sum(jixiao),product from jixiao group by product having product=‘房地产‘;
+--------+-------------+-----------+
| name | sum(jixiao) | product |
+--------+-------------+-----------+
| qiu | 1010000 | 房地产 |
+--------+-------------+-----------+
1 row in set (0.00 sec)
1.全表扫描
#1.什么是全表扫描
查询数据时type类型为ALL
#2.什么情况全表扫描
1)查询数据库所有数据
mysql> explain select * from country
2)没有走索引
没设置索引
索引损坏
2.索引扫描
1.index #全索引扫描
mysql> explain select Name from city;
2.range #范围查询
mysql> explain select * from city where countrycode =‘CHN‘ or countrycode =‘USA‘;
#有限制查询到的数据在总数据的20%以内,超过则走全文扫描,所以在查询是可以使用limit限制
mysql> explain select * from city where countrycode != ‘CHN‘ limit 500;
3.ref #精确查询
mysql> explain select * from city where countrycode =‘CHN‘;
4.eq_ref #使用join on时偶尔会出现
5.const #查询条件是唯一索引或主键索引
mysql> explain select * from city where id=1;
6.system #查询级别与const一样,当数据很少时为该级别
7.null #不需要读取数据,只需要获取最大值或者最小值
mysql> explain select max(population) from city;
1.索引的建立原则
1.能创建唯一索引就创建唯一索引
2.为经常需要排序、分组和联合操作的字段建立索引
3.为常作为查询条件的字段建立索引
如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。
因此,为这样的字段建立索引,可以提高整个表的查询速度。
4.尽量使用前缀来索引
如果索引字段的值很长,最好使用值的前缀来索引。
例如,TEXT和BLOG类型的字段,进行全文检索,会很浪费时间。如果只检索字段的前面的若干个字符,这样可以提高检索速度。
5.限制索引的数目
索引的数目不是越多越好。每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就越大。
修改表时,对索引的重构和更新很麻烦。越多的索引,会使更新表变得很浪费时间。
6.删除不再使用或者很少使用的索引
表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。数据库管理员应当定期找出这些索引,将它们删除,从而减少索引对更新操作的影响。
1.没有查询条件,或者查询条件没有索引
#没有查询条件
mysql> explain select * from city;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| 1 | SIMPLE | city | ALL | NULL | NULL | NULL | NULL | 4188 | NULL |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)
#查询条件没有索引
mysql> explain select District from city;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| 1 | SIMPLE | city | ALL | NULL | NULL | NULL | NULL | 4188 | NULL |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)
2.查询的结果占总数据的20%左右
#占总数据的18%,没走索引
mysql> explain select * from city where population > 400000;
#占总数据的15%,走了索引
mysql> explain select * from city where population > 450000;
#如果数据量查询就是表中大部分数据,可以用limit做限制
mysql> explain select * from city where population > 400000 limit 100;
3.索引损坏
4.查询条件带了特使符号(+,-)
#在=号左侧有特殊符号,不走索引
mysql> explain select * from city where id-1=1;
#在=号右侧有特殊符号,走索引
mysql> explain select * from city where id=3-1;
5.隐式转换
#建表
mysql> create table test (id int ,name varchar(20),telnum varchar(10));
Query OK, 0 rows affected (0.04 sec)
#插入数据
mysql> insert into test values(1,‘zs‘,‘110‘),(2,‘l4‘,120),(3,‘w5‘,119),(4,‘z4‘,112);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0
#建立索引
mysql> desc phonenum;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(10) | YES | | NULL | |
| phone | varchar(10) | YES | UNI | NULL | |
+-------+-------------+------+-----+---------+-------+
3 rows in set (0.00 sec)
#查询语句级别全文扫描
mysql> explain select * from phonenum where phone=6666666;
+----+-------------+----------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | phonenum | ALL | uni_key | NULL | NULL | NULL | 3 | Using where |
+----+-------------+----------+------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)
#当给字符加上引号,查询为索引扫描
mysql> explain select * from phonenum where phone=‘6666666‘;
+----+-------------+----------+-------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | phonenum | const | uni_key | uni_key | 13 | const | 1 | NULL |
+----+-------------+----------+-------+---------------+---------+---------+-------+------+-------+
1 row in set (0.00 sec)
6.like "%_" 百分号在最前面不走
7.联合索引查询不按照顺序有可能不走索引
标签:like str blog temp 百分号 city 左右 creat warnings
原文地址:https://www.cnblogs.com/Applogize/p/13332352.html