标签:hash 构造 exce layer tab math href after copy
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测。
BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整。在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的。其包含BP的两大主要过程,即工作信号的正向传播与误差信号的反向传播,分别负责了神经网络中输出的计算与权值和阈值更新。工作信号的正向传播是通过计算得到BP神经网络的实际输出,误差信号的反向传播是由后往前逐层修正权值与阈值,为了使实际输出更接近期望输出。
? (1)工作信号正向传播。输入信号从输入层进入,通过突触进入隐含层神经元,经传递函数运算后,传递到输出层,并且在输出层计算出输出信号传出。当工作信号正向传播时,权值与阈值固定不变,神经网络中每层的状态只与前一层的净输出、权值和阈值有关。若正向传播在输出层获得到期望的输出,则学习结束,并保留当前的权值与阈值;若正向传播在输出层得不到期望的输出,则在误差信号的反向传播中修正权值与阈值。
? (2)误差信号反向传播。在工作信号正向传播后若得不到期望的输出,则通过计算误差信号进行反向传播,通过计算BP神经网络的实际输出与期望输出之间的差值作为误差信号,并且由神经网络的输出层,逐层向输入层传播。在此过程中,每向前传播一层,就对该层的权值与阈值进行修改,由此一直向前传播直至输入层,该过程是为了使神经网络的结果与期望的结果更相近。
? 当进行一次正向传播和反向传播后,若误差仍不能达到要求,则该过程继续下去,直至误差满足精度,或者满足迭代次数等其他设置的结束条件。
推导请见 https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95
该BPNN为单输入层单隐含层单输出层结构
模拟了矩阵的基本运算方法。
import java.io.Serializable; public class Matrix implements Serializable { private double[][] matrix; //矩阵列数 private int matrixColNums; //矩阵行数 private int matrixRowNums; /** * 构造一个空矩阵 */ public Matrix() { this.matrix = null; this.matrixColNums = 0; this.matrixRowNums = 0; } /** * 构造一个matrix矩阵 * @param matrix */ public Matrix(double[][] matrix) { this.matrix = matrix; this.matrixRowNums = matrix.length; this.matrixColNums = matrix[0].length; } /** * 构造一个rowNums行colNums列值为0的矩阵 * @param rowNums * @param colNums */ public Matrix(int rowNums,int colNums) { double[][] matrix = new double[rowNums][colNums]; for (int i = 0; i < rowNums; i++) { for (int j = 0; j < colNums; j++) { matrix[i][j] = 0; } } this.matrix = matrix; this.matrixRowNums = rowNums; this.matrixColNums = colNums; } /** * 构造一个rowNums行colNums列值为val的矩阵 * @param val * @param rowNums * @param colNums */ public Matrix(double val,int rowNums,int colNums) { double[][] matrix = new double[rowNums][colNums]; for (int i = 0; i < rowNums; i++) { for (int j = 0; j < colNums; j++) { matrix[i][j] = val; } } this.matrix = matrix; this.matrixRowNums = rowNums; this.matrixColNums = colNums; } public double[][] getMatrix() { return matrix; } public void setMatrix(double[][] matrix) { this.matrix = matrix; this.matrixRowNums = matrix.length; this.matrixColNums = matrix[0].length; } public int getMatrixColNums() { return matrixColNums; } public int getMatrixRowNums() { return matrixRowNums; } /** * 获取矩阵指定位置的值 * * @param x * @param y * @return */ public double getValOfIdx(int x, int y) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (x > matrixRowNums - 1) { throw new Exception("索引x越界"); } if (y > matrixColNums - 1) { throw new Exception("索引y越界"); } return matrix[x][y]; } /** * 获取矩阵指定行 * * @param x * @return */ public Matrix getRowOfIdx(int x) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (x > matrixRowNums - 1) { throw new Exception("索引x越界"); } double[][] result = new double[1][matrixColNums]; result[0] = matrix[x]; return new Matrix(result); } /** * 获取矩阵指定列 * * @param y * @return */ public Matrix getColOfIdx(int y) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (y > matrixColNums - 1) { throw new Exception("索引y越界"); } double[][] result = new double[matrixRowNums][1]; for (int i = 0; i < matrixRowNums; i++) { result[i][1] = matrix[i][y]; } return new Matrix(result); } /** * 矩阵乘矩阵 * * @param a * @return * @throws Exception */ public Matrix multiple(Matrix a) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (a.getMatrix() == null) { throw new Exception("参数矩阵为空"); } if (matrixColNums != a.getMatrixRowNums()) { throw new Exception("矩阵纬度不同,不可计算"); } double[][] result = new double[matrixRowNums][a.getMatrixColNums()]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < a.getMatrixColNums(); j++) { for (int k = 0; k < matrixColNums; k++) { result[i][j] = result[i][j] + matrix[i][k] * a.getMatrix()[k][j]; } } } return new Matrix(result); } /** * 二维数组乘一个数字 * * @param a * @return */ public Matrix multiple(double a) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } double[][] result = new double[matrixRowNums][matrixColNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[i][j] = matrix[i][j] * a; } } return new Matrix(result); } /** * 矩阵点乘 * * @param a * @return */ public Matrix pointMultiple(Matrix a) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (a.getMatrix() == null) { throw new Exception("参数矩阵为空"); } if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) { throw new Exception("矩阵纬度不同,不可计算"); } double[][] result = new double[matrixRowNums][matrixColNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[i][j] = matrix[i][j] * a.getMatrix()[i][j]; } } return new Matrix(result); } /** * 矩阵加法 * * @param a * @return */ public Matrix plus(Matrix a) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (a.getMatrix() == null) { throw new Exception("参数矩阵为空"); } if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) { throw new Exception("矩阵纬度不同,不可计算"); } double[][] result = new double[matrixRowNums][matrixColNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[i][j] = matrix[i][j] + a.getMatrix()[i][j]; } } return new Matrix(result); } /** * 矩阵减法 * * @param a * @return */ public Matrix subtract(Matrix a) throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } if (a.getMatrix() == null) { throw new Exception("参数矩阵为空"); } if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) { throw new Exception("矩阵纬度不同,不可计算"); } double[][] result = new double[matrixRowNums][matrixColNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[i][j] = matrix[i][j] - a.getMatrix()[i][j]; } } return new Matrix(result); } /** * 矩阵行求和 * * @return */ public Matrix sumRow() throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } double[][] result = new double[matrixRowNums][1]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[i][1] += matrix[i][j]; } } return new Matrix(result); } /** * 矩阵列求和 * * @return */ public Matrix sumCol() throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } double[][] result = new double[1][matrixColNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[0][i] += matrix[i][j]; } } return new Matrix(result); } /** * 矩阵所有元素求和 * * @return */ public double sumAll() throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } double result = 0; for (double[] doubles : matrix) { for (int j = 0; j < matrixColNums; j++) { result += doubles[j]; } } return result; } /** * 矩阵所有元素求平方 * * @return */ public Matrix square() throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } double[][] result = new double[matrixRowNums][matrixColNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[i][j] = matrix[i][j] * matrix[i][j]; } } return new Matrix(result); } /** * 矩阵转置 * * @return */ public Matrix transpose() throws Exception { if (matrix == null) { throw new Exception("矩阵为空"); } double[][] result = new double[matrixColNums][matrixRowNums]; for (int i = 0; i < matrixRowNums; i++) { for (int j = 0; j < matrixColNums; j++) { result[j][i] = matrix[i][j]; } } return new Matrix(result); } @Override public String toString() { StringBuilder stringBuilder = new StringBuilder(); stringBuilder.append("\r\n"); for (int i = 0; i < matrixRowNums; i++) { stringBuilder.append("# "); for (int j = 0; j < matrixColNums; j++) { stringBuilder.append(matrix[i][j]).append("\t "); } stringBuilder.append("#\r\n"); } stringBuilder.append("\r\n"); return stringBuilder.toString(); } }
public interface ActivationFunction { //计算值 double computeValue(double val); //计算导数 double computeDerivative(double val); }
import java.io.Serializable; public class Sigmoid implements ActivationFunction, Serializable { @Override public double computeValue(double val) { return 1 / (1 + Math.exp(-val)); } @Override public double computeDerivative(double val) { return computeValue(val) * (1 - computeValue(val)); } }
包含了BP神经网络训练所需的参数
import java.io.Serializable; public class BPParameter implements Serializable { //输入层神经元个数 private int inputLayerNeuronNum = 3; //隐含层神经元个数 private int hiddenLayerNeuronNum = 3; //输出层神经元个数 private int outputLayerNeuronNum = 1; //归一化区间 private double normalizationMin = 0.2; private double normalizationMax = 0.8; //学习步长 private double step = 0.05; //动量因子 private double momentumFactor = 0.2; //激活函数 private ActivationFunction activationFunction = new Sigmoid(); //精度 private double precision = 0.000001; //最大循环次数 private int maxTimes = 1000000; public double getMomentumFactor() { return momentumFactor; } public void setMomentumFactor(double momentumFactor) { this.momentumFactor = momentumFactor; } public double getStep() { return step; } public void setStep(double step) { this.step = step; } public double getNormalizationMin() { return normalizationMin; } public void setNormalizationMin(double normalizationMin) { this.normalizationMin = normalizationMin; } public double getNormalizationMax() { return normalizationMax; } public void setNormalizationMax(double normalizationMax) { this.normalizationMax = normalizationMax; } public int getInputLayerNeuronNum() { return inputLayerNeuronNum; } public void setInputLayerNeuronNum(int inputLayerNeuronNum) { this.inputLayerNeuronNum = inputLayerNeuronNum; } public int getHiddenLayerNeuronNum() { return hiddenLayerNeuronNum; } public void setHiddenLayerNeuronNum(int hiddenLayerNeuronNum) { this.hiddenLayerNeuronNum = hiddenLayerNeuronNum; } public int getOutputLayerNeuronNum() { return outputLayerNeuronNum; } public void setOutputLayerNeuronNum(int outputLayerNeuronNum) { this.outputLayerNeuronNum = outputLayerNeuronNum; } public ActivationFunction getActivationFunction() { return activationFunction; } public void setActivationFunction(ActivationFunction activationFunction) { this.activationFunction = activationFunction; } public double getPrecision() { return precision; } public void setPrecision(double precision) { this.precision = precision; } public int getMaxTimes() { return maxTimes; } public void setMaxTimes(int maxTimes) { this.maxTimes = maxTimes; } }
BP神经网络模型,包括权值与阈值及训练参数等属性
import java.io.Serializable; public class BPModel implements Serializable { //BP神经网络权值与阈值 private Matrix weightIJ; private Matrix b1; private Matrix weightJP; private Matrix b2; /*用于反归一化*/ private Matrix inputMax; private Matrix inputMin; private Matrix outputMax; private Matrix outputMin; /*BP神经网络训练参数*/ private BPParameter bpParameter; /*BP神经网络训练情况*/ private double error; private int times; public Matrix getWeightIJ() { return weightIJ; } public void setWeightIJ(Matrix weightIJ) { this.weightIJ = weightIJ; } public Matrix getB1() { return b1; } public void setB1(Matrix b1) { this.b1 = b1; } public Matrix getWeightJP() { return weightJP; } public void setWeightJP(Matrix weightJP) { this.weightJP = weightJP; } public Matrix getB2() { return b2; } public void setB2(Matrix b2) { this.b2 = b2; } public Matrix getInputMax() { return inputMax; } public void setInputMax(Matrix inputMax) { this.inputMax = inputMax; } public Matrix getInputMin() { return inputMin; } public void setInputMin(Matrix inputMin) { this.inputMin = inputMin; } public Matrix getOutputMax() { return outputMax; } public void setOutputMax(Matrix outputMax) { this.outputMax = outputMax; } public Matrix getOutputMin() { return outputMin; } public void setOutputMin(Matrix outputMin) { this.outputMin = outputMin; } public BPParameter getBpParameter() { return bpParameter; } public void setBpParameter(BPParameter bpParameter) { this.bpParameter = bpParameter; } public double getError() { return error; } public void setError(double error) { this.error = error; } public int getTimes() { return times; } public void setTimes(int times) { this.times = times; } }
BP神经网络工厂,包含了BP神经网络训练等功能
import java.io.*; import java.util.*; public class BPNeuralNetworkFactory { /** * 训练BP神经网络模型 * @param bpParameter * @param inputAndOutput * @return */ public BPModel trainBP(BPParameter bpParameter, Matrix inputAndOutput) throws Exception { //BP神经网络的输出 BPModel result = new BPModel(); result.setBpParameter(bpParameter); ActivationFunction activationFunction = bpParameter.getActivationFunction(); int inputNum = bpParameter.getInputLayerNeuronNum(); int hiddenNum = bpParameter.getHiddenLayerNeuronNum(); int outputNum = bpParameter.getOutputLayerNeuronNum(); double normalizationMin = bpParameter.getNormalizationMin(); double normalizationMax = bpParameter.getNormalizationMax(); double step = bpParameter.getStep(); double momentumFactor = bpParameter.getMomentumFactor(); double precision = bpParameter.getPrecision(); int maxTimes = bpParameter.getMaxTimes(); if(inputAndOutput.getMatrixColNums() != inputNum + outputNum){ throw new Exception("神经元个数不符,请修改"); } //初始化权值 Matrix weightIJ = initWeight(inputNum, hiddenNum); Matrix weightJP = initWeight(hiddenNum, outputNum); //初始化阈值 Matrix b1 = initThreshold(hiddenNum); Matrix b2 = initThreshold(outputNum); //动量项 Matrix deltaWeightIJ0 = new Matrix(inputNum, hiddenNum); Matrix deltaWeightJP0 = new Matrix(hiddenNum, outputNum); Matrix deltaB10 = new Matrix(1, hiddenNum); Matrix deltaB20 = new Matrix(1, outputNum); Matrix input = new Matrix(new double[inputAndOutput.getMatrixRowNums()][inputNum]); Matrix output = new Matrix(new double[inputAndOutput.getMatrixRowNums()][outputNum]); for (int i = 0; i < inputAndOutput.getMatrixRowNums(); i++) { for (int j = 0; j < inputNum; j++) { input.getMatrix()[i][j] = inputAndOutput.getValOfIdx(i,j); } for (int j = 0; j < inputAndOutput.getMatrixColNums() - inputNum; j++) { output.getMatrix()[i][j] = inputAndOutput.getValOfIdx(i,inputNum+j); } } //归一化 Map<String,Object> inputAfterNormalize = normalize(input, normalizationMin, normalizationMax); input = (Matrix) inputAfterNormalize.get("res"); Matrix inputMax = (Matrix) inputAfterNormalize.get("max"); Matrix inputMin = (Matrix) inputAfterNormalize.get("min"); result.setInputMax(inputMax); result.setInputMin(inputMin); Map<String,Object> outputAfterNormalize = normalize(output, normalizationMin, normalizationMax); output = (Matrix) outputAfterNormalize.get("res"); Matrix outputMax = (Matrix) outputAfterNormalize.get("max"); Matrix outputMin = (Matrix) outputAfterNormalize.get("min"); result.setOutputMax(outputMax); result.setOutputMin(outputMin); int times = 1; double E = 0;//误差 while (times < maxTimes) { /*-----------------正向传播---------------------*/ //隐含层输入 Matrix jIn = input.multiple(weightIJ); double[][] b1CopyArr = new double[jIn.getMatrixRowNums()][b1.getMatrixRowNums()]; //扩充阈值 for (int i = 0; i < jIn.getMatrixRowNums(); i++) { b1CopyArr[i] = b1.getMatrix()[0]; } Matrix b1Copy = new Matrix(b1CopyArr); //加上阈值 jIn = jIn.plus(b1Copy); //隐含层输出 Matrix jOut = computeValue(jIn,activationFunction); //输出层输入 Matrix pIn = jOut.multiple(weightJP); double[][] b2CopyArr = new double[pIn.getMatrixRowNums()][b2.getMatrixRowNums()]; //扩充阈值 for (int i = 0; i < pIn.getMatrixRowNums(); i++) { b2CopyArr[i] = b2.getMatrix()[0]; } Matrix b2Copy = new Matrix(b2CopyArr); //加上阈值 pIn = pIn.plus(b2Copy); //输出层输出 Matrix pOut = computeValue(pIn,activationFunction); //计算误差 Matrix e = output.subtract(pOut); E = computeE(e);//误差 //判断是否符合精度 if (Math.abs(E) <= precision) { System.out.println("满足精度"); break; } /*-----------------反向传播---------------------*/ //J与P之间权值修正量 Matrix deltaWeightJP = e.multiple(step); deltaWeightJP = deltaWeightJP.pointMultiple(computeDerivative(pIn,activationFunction)); deltaWeightJP = deltaWeightJP.transpose().multiple(jOut); deltaWeightJP = deltaWeightJP.transpose(); //P层神经元阈值修正量 Matrix deltaThresholdP = e.multiple(step); deltaThresholdP = deltaThresholdP.transpose().multiple(computeDerivative(pIn, activationFunction)); //I与J之间的权值修正量 Matrix deltaO = e.pointMultiple(computeDerivative(pIn,activationFunction)); Matrix tmp = weightJP.multiple(deltaO.transpose()).transpose(); Matrix deltaWeightIJ = tmp.pointMultiple(computeDerivative(jIn, activationFunction)); deltaWeightIJ = input.transpose().multiple(deltaWeightIJ); deltaWeightIJ = deltaWeightIJ.multiple(step); //J层神经元阈值修正量 Matrix deltaThresholdJ = tmp.transpose().multiple(computeDerivative(jIn, activationFunction)); deltaThresholdJ = deltaThresholdJ.multiple(-step); if (times == 1) { //更新权值与阈值 weightIJ = weightIJ.plus(deltaWeightIJ); weightJP = weightJP.plus(deltaWeightJP); b1 = b1.plus(deltaThresholdJ); b2 = b2.plus(deltaThresholdP); }else{ //加动量项 weightIJ = weightIJ.plus(deltaWeightIJ).plus(deltaWeightIJ0.multiple(momentumFactor)); weightJP = weightJP.plus(deltaWeightJP).plus(deltaWeightJP0.multiple(momentumFactor)); b1 = b1.plus(deltaThresholdJ).plus(deltaB10.multiple(momentumFactor)); b2 = b2.plus(deltaThresholdP).plus(deltaB20.multiple(momentumFactor)); } deltaWeightIJ0 = deltaWeightIJ; deltaWeightJP0 = deltaWeightJP; deltaB10 = deltaThresholdJ; deltaB20 = deltaThresholdP; times++; } result.setWeightIJ(weightIJ); result.setWeightJP(weightJP); result.setB1(b1); result.setB2(b2); result.setError(E); result.setTimes(times); System.out.println("循环次数:" + times + ",误差:" + E); return result; } /** * 计算BP神经网络的值 * @param bpModel * @param input * @return */ public Matrix computeBP(BPModel bpModel,Matrix input) throws Exception { if (input.getMatrixColNums() != bpModel.getBpParameter().getInputLayerNeuronNum()) { throw new Exception("输入矩阵纬度有误"); } ActivationFunction activationFunction = bpModel.getBpParameter().getActivationFunction(); Matrix weightIJ = bpModel.getWeightIJ(); Matrix weightJP = bpModel.getWeightJP(); Matrix b1 = bpModel.getB1(); Matrix b2 = bpModel.getB2(); double[][] normalizedInput = new double[input.getMatrixRowNums()][input.getMatrixColNums()]; for (int i = 0; i < input.getMatrixRowNums(); i++) { for (int j = 0; j < input.getMatrixColNums(); j++) { normalizedInput[i][j] = bpModel.getBpParameter().getNormalizationMin() + (input.getValOfIdx(i,j) - bpModel.getInputMin().getValOfIdx(0,j)) / (bpModel.getInputMax().getValOfIdx(0,j) - bpModel.getInputMin().getValOfIdx(0,j)) * (bpModel.getBpParameter().getNormalizationMax() - bpModel.getBpParameter().getNormalizationMin()); } } Matrix normalizedInputMatrix = new Matrix(normalizedInput); Matrix jIn = normalizedInputMatrix.multiple(weightIJ); double[][] b1CopyArr = new double[jIn.getMatrixRowNums()][b1.getMatrixRowNums()]; //扩充阈值 for (int i = 0; i < jIn.getMatrixRowNums(); i++) { b1CopyArr[i] = b1.getMatrix()[0]; } Matrix b1Copy = new Matrix(b1CopyArr); //加上阈值 jIn = jIn.plus(b1Copy); //隐含层输出 Matrix jOut = computeValue(jIn,activationFunction); //输出层输入 Matrix pIn = jOut.multiple(weightJP); double[][] b2CopyArr = new double[pIn.getMatrixRowNums()][b2.getMatrixRowNums()]; //扩充阈值 for (int i = 0; i < pIn.getMatrixRowNums(); i++) { b2CopyArr[i] = b2.getMatrix()[0]; } Matrix b2Copy = new Matrix(b2CopyArr); //加上阈值 pIn = pIn.plus(b2Copy); //输出层输出 Matrix pOut = computeValue(pIn,activationFunction); //反归一化 Matrix result = inverseNormalize(pOut, bpModel.getBpParameter().getNormalizationMax(), bpModel.getBpParameter().getNormalizationMin(), bpModel.getOutputMax(), bpModel.getOutputMin()); return result; } //初始化权值 private Matrix initWeight(int x,int y){ Random random=new Random(); double[][] weight = new double[x][y]; for (int i = 0; i < x; i++) { for (int j = 0; j < y; j++) { weight[i][j] = 2*random.nextDouble()-1; } } return new Matrix(weight); } //初始化阈值 private Matrix initThreshold(int x){ Random random = new Random(); double[][] result = new double[1][x]; for (int i = 0; i < x; i++) { result[0][i] = 2*random.nextDouble()-1; } return new Matrix(result); } /** * 计算激活函数的值 * @param a * @return */ private Matrix computeValue(Matrix a, ActivationFunction activationFunction) throws Exception { if (a.getMatrix() == null) { throw new Exception("参数值为空"); } double[][] result = new double[a.getMatrixRowNums()][a.getMatrixColNums()]; for (int i = 0; i < a.getMatrixRowNums(); i++) { for (int j = 0; j < a.getMatrixColNums(); j++) { result[i][j] = activationFunction.computeValue(a.getValOfIdx(i,j)); } } return new Matrix(result); } /** * 激活函数导数的值 * @param a * @return */ private Matrix computeDerivative(Matrix a , ActivationFunction activationFunction) throws Exception { if (a.getMatrix() == null) { throw new Exception("参数值为空"); } double[][] result = new double[a.getMatrixRowNums()][a.getMatrixColNums()]; for (int i = 0; i < a.getMatrixRowNums(); i++) { for (int j = 0; j < a.getMatrixColNums(); j++) { result[i][j] = activationFunction.computeDerivative(a.getValOfIdx(i,j)); } } return new Matrix(result); } /** * 数据归一化 * @param a 要归一化的数据 * @param normalizationMin 要归一化的区间下限 * @param normalizationMax 要归一化的区间上限 * @return */ private Map<String, Object> normalize(Matrix a, double normalizationMin, double normalizationMax) throws Exception { HashMap<String, Object> result = new HashMap<>(); double[][] maxArr = new double[1][a.getMatrixColNums()]; double[][] minArr = new double[1][a.getMatrixColNums()]; double[][] res = new double[a.getMatrixRowNums()][a.getMatrixColNums()]; for (int i = 0; i < a.getMatrixColNums(); i++) { List tmp = new ArrayList(); for (int j = 0; j < a.getMatrixRowNums(); j++) { tmp.add(a.getValOfIdx(j,i)); } double max = (double) Collections.max(tmp); double min = (double) Collections.min(tmp); //数据归一化(注:若max与min均为0则不需要归一化) if (max != 0 || min != 0) { for (int j = 0; j < a.getMatrixRowNums(); j++) { res[j][i] = normalizationMin + (a.getValOfIdx(j,i) - min) / (max - min) * (normalizationMax - normalizationMin); } } maxArr[0][i] = max; minArr[0][i] = min; } result.put("max", new Matrix(maxArr)); result.put("min", new Matrix(minArr)); result.put("res", new Matrix(res)); return result; } /** * 反归一化 * @param a 要反归一化的数据 * @param normalizationMin 要反归一化的区间下限 * @param normalizationMax 要反归一化的区间上限 * @param dataMax 数据最大值 * @param dataMin 数据最小值 * @return */ private Matrix inverseNormalize(Matrix a, double normalizationMax, double normalizationMin , Matrix dataMax,Matrix dataMin) throws Exception { double[][] res = new double[a.getMatrixRowNums()][a.getMatrixColNums()]; for (int i = 0; i < a.getMatrixColNums(); i++) { //数据反归一化 if (dataMin.getValOfIdx(0,i) != 0 || dataMax.getValOfIdx(0,i) != 0) { for (int j = 0; j < a.getMatrixRowNums(); j++) { res[j][i] = dataMin.getValOfIdx(0,i) + (dataMax.getValOfIdx(0,i) - dataMin.getValOfIdx(0,i)) * (a.getValOfIdx(j,i) - normalizationMin) / (normalizationMax - normalizationMin); } } } return new Matrix(res); } /** * 计算误差 * @param e * @return */ private double computeE(Matrix e) throws Exception { e = e.square(); return 0.5*e.sumAll(); } /** * 将BP模型序列化到本地 * @param bpModel * @throws IOException */ public void serialize(BPModel bpModel,String path) throws IOException { File file = new File(path); System.out.println(file.getAbsolutePath()); ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(file)); out.writeObject(bpModel); out.close(); } /** * 将BP模型反序列化 * @return * @throws IOException * @throws ClassNotFoundException */ public BPModel deSerialization(String path) throws IOException, ClassNotFoundException { File file = new File(path); ObjectInputStream oin = new ObjectInputStream(new FileInputStream(file)); BPModel bpModel = (BPModel) oin.readObject(); // 强制转换到BPModel类型 oin.close(); return bpModel; } }
思路就是创建BPNeuralNetworkFactory对象,并传入BPParameter对象,调用BPNeuralNetworkFactory的trainBP(BPParameter bpParameter, Matrix inputAndOutput)方法,返回一个BPModel对象,可以使用BPNeuralNetworkFactory的序列化方法,将其序列化到本地,或者将其放到缓存中,使用时直接从本地反序列化获取到BPModel对象,调用BPNeuralNetworkFactory的computeBP(BPModel bpModel,Matrix input)方法,即可获取计算值。
使用详情请看:https://github.com/ineedahouse/top-algorithm-set-doc/blob/master/doc/bpnn/BPNeuralNetwork.md
https://github.com/ineedahouse/top-algorithm-set
对您有帮助的话,请点个Star~谢谢
参考:基于BP神经网络的无约束优化方法研究及应用[D]. 赵逸翔.东北农业大学 2019
标签:hash 构造 exce layer tab math href after copy
原文地址:https://www.cnblogs.com/MrZhaoyx/p/13271832.html