码迷,mamicode.com
首页 > 编程语言 > 详细

java-map之hashmap

时间:2020-07-30 01:42:29      阅读:74      评论:0      收藏:0      [点我收藏+]

标签:nod   哈希   碰撞   响应   tab   重要   min   extends   拆分   

1.1概述

HashMap基于Map接口实现,元素以键值对的方式存储,并且允许使用null键和null值, 因为key不允许重复,因此只能有一个键为null,另外HashMap不能保证放入元素的顺序,它是无序的,和放入的顺序并不能相同。HashMap是线程不安全的。

1.2详解

在jdk1.7中HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)

//HashMap的主干数组,可以看到就是一个Entry数组,初始值为空数组{},主干数组的长度一定是2的次幂。
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

Entry是HashMap中的一个静态内部类。代码如下:

    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        //存储指向下一个Entry的引用,单链表结构
        Entry<K,V> next;
        //对key的hashcode值进行hash运算后得到的值,存储在Entry,避免重复计算
        int hash;
        //构造函数
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        } 

jdk1.7及其之前版本中几个比较重要的字段(jdk1.8以后只是加了一些重要字段,原来这些依旧存在):

//实际存储的key-value键值对的个数
transient int size;

//阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,threshold一般为 capacity*loadFactory。
int threshold;

//负载因子,代表了table的填充度有多少,默认是0.75,负载因子存在的原因,还是因为减缓哈希冲突,如果初始桶为16,等到满16个元素才扩容,某些桶里可能就有不止一个元素了。
//若小于0.75如0.5,则数组长度达到一半大小就需要扩容,空间使用率大大降低,
//若大于0.75如0.8,则会增大hash冲突的概率,影响查询效率。
final float loadFactor;

//HashMap被改变的次数,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),需要抛出异常ConcurrentModificationException
//fail-fast机制,在通过迭代器遍历集合时,迭代器会有一个对应的属性值初始化为modCount,当该属性值和modCount不等时,说明modCount被修改了。直接抛出异常
transient int modCount;

HashMap有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值。initialCapacity默认为16,loadFactory默认为0.75,其中的init方法在HashMap中没有实际实现,不过在其子类如linkedHashMap中就会有对应实现

public HashMap(int initialCapacity, float loadFactor) {
     //此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
     
        init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
    }

上面可以看出其实初始化的时候并没有创建Entry<K,V>数组。然后看看put方法:

public V put(K key, V value) {
        //如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold。
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
       //如果key为null,存储位置为table[0]或table[0]的冲突链上
        if (key == null)
            return putForNullKey(value);
        //对key的hashcode进一步计算,确保散列均匀
        int hash = hash(key);
        //获取在table中的实际位置
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        //如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        //保证并发访问时,若HashMap内部结构发生变化,快速响应失败
        modCount++;
        addEntry(hash, key, value, i);//新增一个entry
        return null;
    }

需要注意的地方,在指定容量时,最后生成的容量是向上取整的2的次幂。

private void inflateTable(int toSize) {
        int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂
        /**此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,
        capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1 */
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }

然后看看增加元素的操作:

void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }
        createEntry(hash, key, value, bucketIndex);
    }

当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作。
然后取元素:

 public V get(Object key) {
     //如果key为null,则直接去table[0]处去检索即可。
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);
        return null == entry ? null : entry.getValue();
 }
final Entry<K,V> getEntry(Object key) {
            
        if (size == 0) {
            return null;
        }
        //通过key的hashcode值计算hash值
        int hash = (key == null) ? 0 : hash(key);
        //indexFor (hash&length-1) 获取最终数组索引,然后遍历链表,通过equals方法比对找出对应记录
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && 
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }    

在jdk1.8以后,增加了红黑树结构来优化hashmap,所以在一些逻辑代码上进行了修改,首先增加了一些重要的字段,修改了一些字段,Entry->Node 为了适应红黑树的treenode.

//刚才提到了当链表长度过长时,会有一个阈值,超过这个阈值8就会转化为红黑树
static final int TREEIFY_THRESHOLD = 8;

//当红黑树上的元素个数,减少到6个时,就退化为链表
static final int UNTREEIFY_THRESHOLD = 6;

//链表转化为红黑树,除了有阈值的限制,还有另外一个限制,需要数组容量至少达到64,才会树化。
//这是为了避免,数组扩容和树化阈值之间的冲突。防止你在哪里反复变身
static final int MIN_TREEIFY_CAPACITY = 64;


//普通单向链表节点类
static class Node<K,V> implements Map.Entry<K,V> {
	//key的hash值,put和get的时候都需要用到它来确定元素在数组中的位置
	final int hash;
	final K key;
	V value;
	//指向单链表的下一个节点
	Node<K,V> next;

	Node(int hash, K key, V value, Node<K,V> next) {
		this.hash = hash;
		this.key = key;
		this.value = value;
		this.next = next;
	}
}

//转化为红黑树的节点类
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
	//当前节点的父节点
	TreeNode<K,V> parent;  
	//左孩子节点
	TreeNode<K,V> left;
	//右孩子节点
	TreeNode<K,V> right;
	//指向前一个节点
	TreeNode<K,V> prev;    // needed to unlink next upon deletion
	//当前节点是红色或者黑色的标识
	boolean red;
	TreeNode(int hash, K key, V val, Node<K,V> next) {
		super(hash, key, val, next);
	}
}	

put方法也进行了修改.

public V put(K key, V value) {
	return putVal(hash(key), key, value, false, true);
}
//hash值、当前的key、value、这里onlyIfAbsent如果为true,表明不能修改已经存在的值,因此我们传入false、evict只有在方法 afterNodeInsertion(boolean evict) { }用到,可以看到它是一个空实现,因此不用关注这个参数
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
			   boolean evict) {
	Node<K,V>[] tab; Node<K,V> p; int n, i;
	//判断table是否为空,如果空的话,会先调用resize扩容
	if ((tab = table) == null || (n = tab.length) == 0)
		n = (tab = resize()).length;
	//根据当前key的hash值找到它在数组中的下标,判断当前下标位置是否已经存在元素,若没有,则把key、value包装成Node节点,直接添加到此位置。

	if ((p = tab[i = (n - 1) & hash]) == null)
		tab[i] = newNode(hash, key, value, null);
	else { 
		//如果当前位置已经有元素了,分为三种情况。
		Node<K,V> e; K k;
		//1.当前位置元素的hash值等于传过来的hash,并且他们的key值也相等,
		//则把p赋值给e,跳转到①处,后续需要做值的覆盖处理
		if (p.hash == hash &&
			((k = p.key) == key || (key != null && key.equals(k))))
			e = p;
		//2.如果当前是红黑树结构,则把它加入到红黑树 
		else if (p instanceof TreeNode)
			e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
		else {
		//3.说明此位置已存在元素,并且是普通链表结构,则采用尾插法,把新节点加入到链表尾部
			for (int binCount = 0; ; ++binCount) {
				if ((e = p.next) == null) {
					//如果头结点的下一个节点为空,则插入新节点
					p.next = newNode(hash, key, value, null);
					//如果在插入的过程中,链表长度超过了8,则转化为红黑树
					if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
						treeifyBin(tab, hash);
					//插入成功之后,跳出循环,跳转到①处
					break;
				}
				//若在链表中找到了相同key的话,直接退出循环,跳转到①处
				if (e.hash == hash &&
					((k = e.key) == key || (key != null && key.equals(k))))
					break;
				p = e;
			}
		}
		//①
		//说明发生了碰撞,e代表的是旧值,因此节点位置不变,但是需要替换为新值
		if (e != null) { // existing mapping for key
			V oldValue = e.value;
			//用新值替换旧值,并返回旧值。
			if (!onlyIfAbsent || oldValue == null)
				e.value = value;
			//看方法名字即可知,这是在node被访问之后需要做的操作。其实此处是一个空实现,
			//只有在 LinkedHashMap才会实现,用于实现根据访问先后顺序对元素进行排序,hashmap不提供排序功能
			// Callbacks to allow LinkedHashMap post-actions
			//void afterNodeAccess(Node<K,V> p) { }
			afterNodeAccess(e);
			return oldValue;
		}
	}
	//fail-fast机制
	++modCount;
	//如果当前数组中的元素个数超过阈值,则扩容
	if (++size > threshold)
		resize();
	//同样的空实现
	afterNodeInsertion(evict);
	return null;
}

resize函数

final Node<K,V>[] resize() {
	//旧数组
	Node<K,V>[] oldTab = table;
	//旧数组的容量
	int oldCap = (oldTab == null) ? 0 : oldTab.length;
	//旧数组的扩容阈值,注意看,这里取的是当前对象的 threshold 值,下边的第2种情况会用到。
	int oldThr = threshold;
	//初始化新数组的容量和阈值,分三种情况讨论。
	int newCap, newThr = 0;
	//1.当旧数组的容量大于0时,说明在这之前肯定调用过 resize扩容过一次,才会导致旧容量不为0。
	//为什么这样说呢,之前我在 tableSizeFor 卖了个关子,需要注意的是,它返回的值是赋给了 threshold 而不是 capacity。
	//我们在这之前,压根就没有在任何地方看到过,它给 capacity 赋初始值。
	if (oldCap > 0) {
		//容量达到了最大值
		if (oldCap >= MAXIMUM_CAPACITY) {
			threshold = Integer.MAX_VALUE;
			return oldTab;
		}
		//新数组的容量和阈值都扩大原来的2倍
		else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
				 oldCap >= DEFAULT_INITIAL_CAPACITY)
			newThr = oldThr << 1; // double threshold
	}
	//2.到这里,说明 oldCap <= 0,并且 oldThr(threshold) > 0,这就是 map 初始化的时候,第一次调用 resize的情况
	//而 oldThr的值等于 threshold,此时的 threshold 是通过 tableSizeFor 方法得到的一个2的n次幂的值(我们以16为例)。
	//因此,需要把 oldThr 的值,也就是 threshold ,赋值给新数组的容量 newCap,以保证数组的容量是2的n次幂。
	//所以我们可以得出结论,当map第一次 put 元素的时候,就会走到这个分支,把数组的容量设置为正确的值(2的n次幂)
	//但是,此时 threshold 的值也是2的n次幂,这不对啊,它应该是数组的容量乘以加载因子才对。别着急,这个会在③处理。
	else if (oldThr > 0) // initial capacity was placed in threshold
		newCap = oldThr;
	//3.到这里,说明 oldCap 和 oldThr 都是小于等于0的。也说明我们的map是通过默认无参构造来创建的,
	//于是,数组的容量和阈值都取默认值就可以了,即 16 和 12。
	else {               // zero initial threshold signifies using defaults
		newCap = DEFAULT_INITIAL_CAPACITY;
		newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
	}
	//③ 这里就是处理第2种情况,因为只有这种情况 newThr 才为0,
	//因此计算 newThr(用 newCap即16 乘以加载因子 0.75,得到 12) ,并把它赋值给 threshold
	if (newThr == 0) {
		float ft = (float)newCap * loadFactor;
		newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
				  (int)ft : Integer.MAX_VALUE);
	}
	//赋予 threshold 正确的值,表示数组下次需要扩容的阈值(此时就把原来的 16 修正为了 12)。
	threshold = newThr;
	@SuppressWarnings({"rawtypes","unchecked"})
		//我们可以发现,在构造函数时,并没有创建数组,在第一次调用put方法,导致resize的时候,才会把数组创建出来。这是为了延迟加载,提高效率。
		Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
	table = newTab;
	//如果原来的数组不为空,那么我们就需要把原来数组中的元素重新分配到新的数组中
	//如果是第2种情况,由于是第一次调用resize,此时数组肯定是空的,因此也就不需要重新分配元素。
	if (oldTab != null) {
		//遍历旧数组
		for (int j = 0; j < oldCap; ++j) {
			Node<K,V> e;
			//取到当前下标的第一个元素,如果存在,则分三种情况重新分配位置
			if ((e = oldTab[j]) != null) {
				oldTab[j] = null;
				//1.如果当前元素的下一个元素为空,则说明此处只有一个元素
				//则直接用它的hash()值和新数组的容量取模就可以了,得到新的下标位置。
				if (e.next == null)
					newTab[e.hash & (newCap - 1)] = e;
				//2.如果是红黑树结构,则拆分红黑树,必要时有可能退化为链表
				else if (e instanceof TreeNode)
					((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
				//3.到这里说明,这是一个长度大于 1 的普通链表,则需要计算并
				//判断当前位置的链表是否需要移动到新的位置
				else { // preserve order
					// loHead 和 loTail 分别代表链表旧位置的头尾节点
					Node<K,V> loHead = null, loTail = null;
					// hiHead 和 hiTail 分别代表链表移动到新位置的头尾节点
					Node<K,V> hiHead = null, hiTail = null;
					Node<K,V> next;
					do {
						next = e.next;
						//如果当前元素的hash值和oldCap做与运算为0,则原位置不变
						if ((e.hash & oldCap) == 0) {
							if (loTail == null)
								loHead = e;
							else
								loTail.next = e;
							loTail = e;
						}
						//否则,需要移动到新的位置
						else {
							if (hiTail == null)
								hiHead = e;
							else
								hiTail.next = e;
							hiTail = e;
						}
					} while ((e = next) != null);
					//原位置不变的一条链表,数组下标不变
					if (loTail != null) {
						loTail.next = null;
						newTab[j] = loHead;
					}
					//移动到新位置的一条链表,数组下标为原下标加上旧数组的容量
					if (hiTail != null) {
						hiTail.next = null;
						newTab[j + oldCap] = hiHead;
					}
				}
			}
		}
	}
	return newTab;
}

1.5 jdk1.7和1.8实现的区别

  • JDK1.7用的是头插法,而JDK1.8及之后使用的都是尾插法,那么他们为什么要这样做呢?因为JDK1.7是用单链表进行的纵向延伸,当采用头插法就是能够提高插入的效率,但是也会容易出现逆序且环形链表死循环问题。但是在JDK1.8之后是因为加入了红黑树使用尾插法,能够避免出现逆序且链表死循环的问题。
  • 扩容后数据存储位置的计算方式也不一样:1. 在JDK1.7的时候是直接用hash值和需要扩容的二进制数进行&。而在JDK1.8的时候直接用了JDK1.7的时候计算的规律,也就是扩容前的原始位置+扩容的大小值=JDK1.8的计算方式,而不再是JDK1.7的那种异或的方法。但是这种方式就相当于只需要判断Hash值的新增参与运算的位是0还是1就直接迅速计算出了扩容后的储存方式。
  • 当然由于引入了红黑树,在put等方法的一些逻辑上也进行了一定程度的修改。

java-map之hashmap

标签:nod   哈希   碰撞   响应   tab   重要   min   extends   拆分   

原文地址:https://www.cnblogs.com/jiezao/p/13399988.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!