标签:ffffff csdn sub 创建 没有 start 设计 应用 toc
@
LIO-SAM将lidar-惯性里程计置于一个因子图之上,允许从不同来源将多种相对和绝对测量,包括环闭检测,作为因子合并到系统中。由惯性测量单元(IMU)预积分估计的运动消除点云畸变,并为激光雷达里程计优化提供初始猜测。所得到的激光里程计解被用来估计IMU的偏差。为了确保实时的高性能,我们将旧的激光雷达扫描边缘化以优化姿态,而不是将激光雷达扫描与全局地图匹配。局部尺度的扫描匹配代替了全局尺度的扫描匹配,大大提高了系统的实时性。还有选择性地引入关键帧,以及将新关键帧注册到固定大小的先前“子关键帧”集合的高效滑动窗口方法。
LOAM将其数据保存在全局体素图中,通常很难执行环路闭合检测和合并其他绝对测量值(例如GPS)进行姿态校正。当这个体素图在一个特征丰富的环境中变得密集时,它的在线优化过程就变得不那么有效了。LOAM在大规模测试中也会出现漂移,因为它的核心是基于扫描匹配的方法。
我们假设一个非线性运动模型对点云去畸变,使用原始的IMU测量数据估计传感器在一个激光雷达扫描过程中的运动。除了点云去畸变,估计的运动还作为激光雷达里程计优化的初始猜测。得到的激光里程计解用于估计因子图中IMU的偏差。通过引入全局因子图进行机器人轨迹估计,可以有效地利用lidar和IMU测量进行传感器融合,在机器人姿态之间进行位置识别,并引入绝对测量,如GPS定位和罗盘航向。这些来自不同来源的因子集合用于图的联合优化。此外,我们将旧的激光雷达扫描边缘化以优化姿势,而不是将扫描与全局地图(如loam)匹配。局部尺度的扫描匹配而不是全局尺度的扫描匹配显著地提高了系统的实时性能,关键帧的选择性引入也是如此,以及一种有效的滑动窗口方法,它将一个新的关键帧注册到一组固定大小的先验“子关键帧”中。
我们的主要贡献可概括如下:
这种利用传感器融合的设计方案通常可分为两类:
当机器人姿态变化超过用户定义的阈值时,将在图中添加一个新的机器人状态节点x。因子图在插入新节点时使用贝叶斯树(iSAM2)[19]的增量平滑和映射进行优化
、
体素地图的子关键帧(Sub-keyframes)
:我们实现了一个滑动窗口的方法来创建一个包含固定数量的最近激光雷达扫描的点云地图。我们没有优化两个连续的激光雷达扫描之间的转换,而是提取n个最近的关键帧,我们称之为子关键帧,用于估计。然后子关键帧集合\(\left\{\mathbb{F}_{i-n}, \ldots, \mathbb{F}_{i}\right\}\)使用与之关联的变换矩阵\({T_{i-n},...,T_i}\)转换到世界坐标系W。转换后的子关键帧被合并到一个体素地图\(M_i\)中。于我们在前面的特征提取步骤中提取了两种类型的特征,因此\(M_i\)由两个亚体素地图组成,分别是边缘特征体素地图\(M^e_i\)和平面特征体素地图\(M^p_i\)。激光雷达帧和体素地图之间的关系如下:Scan-matching:
(这里比较简单,就直接上原文了)当我们接收到GPS测量值时,我们首先使用[21]中提出的方法将其转换到局部笛卡尔坐标系中。在因子图中添加一个新节点之后,我们将一个新的GPS因子与这个节点关联起来。如果GPS信号与激光雷达帧之间没有硬件同步,则根据激光雷达帧的时间戳对GPS测量值进行线性插值。
我们注意到,在GPS接收可用时不断增加GPS因子是不必要的,因为激光雷达惯性测程法的漂移增长非常缓慢。在实际应用中,我们只在估计的GPS位置协方差大于接收到的GPS位置协方差时添加一个GPS因子。
和lego-loam一样使用的基于欧式距离的闭环检测,不再赘述
码字不易,如果对您有帮助,就打赏一下吧,你的支持是我前进的动力O(∩_∩)O
LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping论文解读
标签:ffffff csdn sub 创建 没有 start 设计 应用 toc
原文地址:https://www.cnblogs.com/long5683/p/13428246.html