标签:并发 可重入锁 reentrantlock
这篇讲讲ReentrantLock可重入锁,JUC里提供的可重入锁是基于AQS实现的阻塞式可重入锁。这篇 聊聊高并发(十六)实现一个简单的可重入锁 模拟了可重入锁的实现。可重入锁的特点是:
1. 是互斥锁,基于AQS的互斥模式实现,也就是说同时只有一个线程进入临界区,唤醒下一个线程时也只能释放一个等待线程
2. 可重入,通过设置了一个字段exclusiveOwnerThread来标示当前获得锁的线程。获取锁操作是,如果当前线程是已经获得锁的线程,那么获取操作成功。把当前状态作为获得锁次数的计数器,重入一次就加1,释放一次就减1,直到状态为0
3. 1个可重入锁可以关联多个Condition条件对象来操作多个条件队列。Condition接口提供了显式阻塞/唤醒线程的条件队列操作。这点比内置锁和内置条件队列更具灵活性,1个对象只有1个内置锁和1个内置条件队列。看这篇聊聊高并发(十四)理解Java中的管程,条件队列,Condition以及实现一个阻塞队列
来看看ReentrantLock的代码。 它也提供了Sync类来继承AQS,通过实现tryXXX来扩展功能。
1. nonfairTryAcquire()是非公平的tryAcquire操作,可以无视AQS等待队列,直接通过判断状态来尝试获取锁,并把当前线程设置为获取锁的线程来支持可重入性
2. tryRelease()方法通过修改状态来释放锁,如果状态为0,就把exclusiveOwnerThread设置为空,给之后线程竞争
3. newCondition() 方法每次都创建一个ConditionObject来表示1个条件队列。在之前讲AQS的文章中讲了,从条件队列唤醒后不是立刻获得锁,而是从条件队列进入到了同步队列,还是得竞争锁。而队列锁的数据结构提供了先来先服务的特性,并且降低了锁的争用
abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = -5179523762034025860L; /** * Performs {@link Lock#lock}. The main reason for subclassing * is to allow fast path for nonfair version. */ abstract void lock(); /** * Performs non-fair tryLock. tryAcquire is * implemented in subclasses, but both need nonfair * try for trylock method. */ final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } protected final boolean isHeldExclusively() { // While we must in general read state before owner, // we don't need to do so to check if current thread is owner return getExclusiveOwnerThread() == Thread.currentThread(); } final ConditionObject newCondition() { return new ConditionObject(); } // Methods relayed from outer class final Thread getOwner() { return getState() == 0 ? null : getExclusiveOwnerThread(); } final int getHoldCount() { return isHeldExclusively() ? getState() : 0; } final boolean isLocked() { return getState() != 0; } /** * Reconstitutes this lock instance from a stream. * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); setState(0); // reset to unlocked state } }
同样提供了公平锁和非公平锁的FairSync和NonfairSync实现。和之前的Semaphore中公平性的含义一样,非公平性体现在获取操作时是否等待AQS队列中的先来的线程,而一旦非公平获取锁失败,那么就进入AQS队列等待,AQS队列是FIFO的队列
1. 可以看到非公平锁的lock操作,先用最快路径的方式尝试了一次获得锁,如果获取失败,才用acquire操作调用AQS队列
2. 公平锁的tryAcquire操作在状态为0时要先等待先来的线程都是否后才能获得锁,如果有先来的线程,那么就进入AQS队列。如果当前获得锁的线程是自己,就直接获得锁,把状态加1,体现了可重入
static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } } /** * Sync object for fair locks */ static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }
public ReentrantLock() { sync = new NonfairSync(); }
1. 可中断和不可中断的lock操作
2. 提供了tryLock()方式非公平的获取一次锁,如果不成功就返回
3. 提供了tryLock(long timeout, TimeUnit unit)的限时锁
public void lock() { sync.lock(); } public void lockInterruptibly() throws InterruptedException { sync.acquireInterruptibly(1); } public boolean tryLock() { return sync.nonfairTryAcquire(1); } public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireNanos(1, unit.toNanos(timeout)); } public Condition newCondition() { return sync.newCondition(); }
聊聊高并发(二十七)解析java.util.concurrent各个组件(九) 理解ReentrantLock可重入锁
标签:并发 可重入锁 reentrantlock
原文地址:http://blog.csdn.net/iter_zc/article/details/41012473