码迷,mamicode.com
首页 > 移动开发 > 详细

Dapper的基本使用

时间:2020-10-29 09:39:30      阅读:36      评论:0      收藏:0      [点我收藏+]

标签:变量   variable   xtend   arc   issues   testing   tput   eth   creat   

Dapper - a simple object mapper for .Net

Dapper是.NET下一个micro ORM,它和Entity Framework或Nhibnate不同,属于轻量级的,并且是半自动的,也就是说实体类都要自己写。

下载地址:https://github.com/StackExchange/Dapper/

优点

1. 使用Dapper可以自动进行对象映射。

2. 轻量级,单文件。

3. 支持多数据库。

4. Dapper原理通过Emit反射IDataReader的序列队列,来快速的得到和产生对象。

5. 可以映射一对一,一对多,多对多等多种关系。

Release Notes

Located at stackexchange.github.io/Dapper

Packages

MyGet Pre-release feed: https://www.myget.org/gallery/dapper

Package NuGet Stable NuGet Pre-release Downloads MyGet
Dapper 技术图片 技术图片 技术图片 技术图片
Dapper.Contrib 技术图片 技术图片 技术图片 技术图片
Dapper.EntityFramework 技术图片 技术图片 技术图片 技术图片
Dapper.EntityFramework.StrongName 技术图片 技术图片 技术图片 技术图片
Dapper.Rainbow 技术图片 技术图片 技术图片 技术图片
Dapper.SqlBuilder 技术图片 技术图片 技术图片 技术图片
Dapper.StrongName 技术图片 技术图片 技术图片 技术图片

Features

Dapper is a NuGet library that you can add in to your project that will extend your IDbConnection interface.

It provides 3 helpers:

执行查询并将结果映射到强类型列表

public static IEnumerable<T> Query<T>(this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null, bool buffered = true)

Example usage:

public class Dog
{
    public int? Age { get; set; }
    public Guid Id { get; set; }
    public string Name { get; set; }
    public float? Weight { get; set; }

    public int IgnoredProperty { get { return 1; } }
}

var guid = Guid.NewGuid();
var dog = connection.Query<Dog>("select Age = @Age, Id = @Id", new { Age = (int?)null, Id = guid });

Assert.Equal(1,dog.Count());
Assert.Null(dog.First().Age);
Assert.Equal(guid, dog.First().Id);

执行查询并将其映射到动态对象列表Execute a query and map it to a list of dynamic objects

public static IEnumerable<dynamic> Query (this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null, bool buffered = true)

This method will execute SQL and return a dynamic list.

Example usage:

var rows = connection.Query("select 1 A, 2 B union all select 3, 4").AsList();

Assert.Equal(1, (int)rows[0].A);
Assert.Equal(2, (int)rows[0].B);
Assert.Equal(3, (int)rows[1].A);
Assert.Equal(4, (int)rows[1].B);

执行不返回任何结果的命令

public static int Execute(this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null)

Example usage:

var count = connection.Execute(@"
  set nocount on
  create table #t(i int)
  set nocount off
  insert #t
  select @a a union all select @b
  set nocount on
  drop table #t", new {a=1, b=2 });
Assert.Equal(2, count);

多次执行一个命令

The same signature also allows you to conveniently and efficiently execute a command multiple times (for example to bulk-load data)

Example usage:

var count = connection.Execute(@"insert MyTable(colA, colB) values (@a, @b)",
    new[] { new { a=1, b=1 }, new { a=2, b=2 }, new { a=3, b=3 } }
  );
Assert.Equal(3, count); // 3 rows inserted: "1,1", "2,2" and "3,3"

This works for any parameter that implements IEnumerable for some T.

参数化查询

Parameters are passed in as anonymous classes. This allow you to name your parameters easily and gives you the ability to simply cut-and-paste SQL snippets and run them in your db platform‘s Query analyzer.

new {A = 1, B = "b"} // A will be mapped to the param @A, B to the param @B

List 支持

Dapper allows you to pass in IEnumerable<int> and will automatically parameterize your query.

For example:

connection.Query<int>("select * from (select 1 as Id union all select 2 union all select 3) as X where Id in @Ids", new { Ids = new int[] { 1, 2, 3 } });

Will be translated to:

select * from (select 1 as Id union all select 2 union all select 3) as X where Id in (@Ids1, @Ids2, @Ids3)" // @Ids1 = 1 , @Ids2 = 2 , @Ids2 = 3

文字字面替换

Dapper supports literal replacements for bool and numeric types.

connection.Query("select * from User where UserTypeId = {=Admin}", new { UserTypeId.Admin });

The literal replacement is not sent as a parameter; this allows better plans and filtered index usage but should usually be used sparingly and after testing. This feature is particularly useful when the value being injected is actually a fixed value (for example, a fixed "category id", "status code" or "region" that is specific to the query). For live data where you are considering literals, you might also want to consider and test provider-specific query hints like OPTIMIZE FOR UNKNOWN with regular parameters.

缓冲和无缓冲的阅读器

Dapper‘s default behavior is to execute your SQL and buffer the entire reader on return. This is ideal in most cases as it minimizes shared locks in the db and cuts down on db network time.

However when executing huge queries you may need to minimize memory footprint and only load objects as needed. To do so pass, buffered: false into the Query method.

多映射

Dapper allows you to map a single row to multiple objects. This is a key feature if you want to avoid extraneous querying and eager load associations.

Example:

Consider 2 classes: Post and User

class Post
{
    public int Id { get; set; }
    public string Title { get; set; }
    public string Content { get; set; }
    public User Owner { get; set; }
}

class User
{
    public int Id { get; set; }
    public string Name { get; set; }
}

Now let us say that we want to map a query that joins both the posts and the users table. Until now if we needed to combine the result of 2 queries, we‘d need a new object to express it but it makes more sense in this case to put the User object inside the Post object.

This is the use case for multi mapping. You tell dapper that the query returns a Post and a User object and then give it a function describing what you want to do with each of the rows containing both a Post and a User object. In our case, we want to take the user object and put it inside the post object. So we write the function:

(post, user) => { post.Owner = user; return post; }

The 3 type arguments to the Query method specify what objects dapper should use to deserialize the row and what is going to be returned. We‘re going to interpret both rows as a combination of Post and User and we‘re returning back a Post object. Hence the type declaration becomes

<Post, User, Post>

Everything put together, looks like this:

var sql =
@"select * from #Posts p
left join #Users u on u.Id = p.OwnerId
Order by p.Id";

var data = connection.Query<Post, User, Post>(sql, (post, user) => { post.Owner = user; return post;});
var post = data.First();

Assert.Equal("Sams Post1", post.Content);
Assert.Equal(1, post.Id);
Assert.Equal("Sam", post.Owner.Name);
Assert.Equal(99, post.Owner.Id);

Dapper is able to split the returned row by making an assumption that your Id columns are named Id or id. If your primary key is different or you would like to split the row at a point other than Id, use the optional splitOn parameter.

多结果查询

Dapper allows you to process multiple result grids in a single query.

Example:

var sql =
@"
select * from Customers where CustomerId = @id
select * from Orders where CustomerId = @id
select * from Returns where CustomerId = @id";

using (var multi = connection.QueryMultiple(sql, new {id=selectedId}))
{
   var customer = multi.Read<Customer>().Single();
   var orders = multi.Read<Order>().ToList();
   var returns = multi.Read<Return>().ToList();
   ...
}

存储过程

Dapper fully supports stored procs:

var user = cnn.Query<User>("spGetUser", new {Id = 1},
        commandType: CommandType.StoredProcedure).SingleOrDefault();

If you want something more fancy, you can do:

var p = new DynamicParameters();
p.Add("@a", 11);
p.Add("@b", dbType: DbType.Int32, direction: ParameterDirection.Output);
p.Add("@c", dbType: DbType.Int32, direction: ParameterDirection.ReturnValue);

cnn.Execute("spMagicProc", p, commandType: CommandType.StoredProcedure);

int b = p.Get<int>("@b");
int c = p.Get<int>("@c");

Ansi字符串和varchar

Dapper supports varchar params, if you are executing a where clause on a varchar column using a param be sure to pass it in this way:

Query<Thing>("select * from Thing where Name = @Name", new {Name = new DbString { Value = "abcde", IsFixedLength = true, Length = 10, IsAnsi = true });

On SQL Server it is crucial to use the unicode when querying unicode and ANSI when querying non unicode.

每行类型切换

Usually you‘ll want to treat all rows from a given table as the same data type. However, there are some circumstances where it‘s useful to be able to parse different rows as different data types. This is where IDataReader.GetRowParser comes in handy.

Imagine you have a database table named "Shapes" with the columns: Id, Type, and Data, and you want to parse its rows into Circle, Square, or Triangle objects based on the value of the Type column.

var shapes = new List<IShape>();
using (var reader = connection.ExecuteReader("select * from Shapes"))
{
    // Generate a row parser for each type you expect.
    // The generic type <IShape> is what the parser will return.
    // The argument (typeof(*)) is the concrete type to parse.
    var circleParser = reader.GetRowParser<IShape>(typeof(Circle));
    var squareParser = reader.GetRowParser<IShape>(typeof(Square));
    var triangleParser = reader.GetRowParser<IShape>(typeof(Triangle));

    var typeColumnIndex = reader.GetOrdinal("Type");

    while (reader.Read())
    {
        IShape shape;
        var type = (ShapeType)reader.GetInt32(typeColumnIndex);
        switch (type)
        {
            case ShapeType.Circle:
            	shape = circleParser(reader);
            	break;
            case ShapeType.Square:
            	shape = squareParser(reader);
            	break;
            case ShapeType.Triangle:
            	shape = triangleParser(reader);
            	break;
            default:
            	throw new NotImplementedException();
        }

      	shapes.Add(shape);
    }
}

在MySQL用户定义的变量

In order to use Non-parameter SQL variables with MySql Connector, you have to add the following option to your connection string:

Allow User Variables=True

Make sure you don‘t provide Dapper with a property to map.

限制和警告

Dapper caches information about every query it runs, this allows it to materialize objects quickly and process parameters quickly. The current implementation caches this information in a ConcurrentDictionary object. Statements that are only used once are routinely flushed from this cache. Still, if you are generating SQL strings on the fly without using parameters it is possible you may hit memory issues.

Dapper‘s simplicity means that many feature that ORMs ship with are stripped out. It worries about the 95% scenario, and gives you the tools you need most of the time. It doesn‘t attempt to solve every problem.

Dapper会与我的DB provider一起工作吗?

Dapper has no DB specific implementation details, it works across all .NET ADO providers including SQLite, SQL CE, Firebird, Oracle, MySQL, PostgreSQL and SQL Server.

Do you have a comprehensive list of examples?

Dapper has a comprehensive test suite in the test project.

Who is using this?

Dapper is in production use at Stack Overflow.

Dapper的基本使用

标签:变量   variable   xtend   arc   issues   testing   tput   eth   creat   

原文地址:https://www.cnblogs.com/springsnow/p/13889546.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!