标签:乐观锁 from href 一个 schema innodb nsa 申请 next
不同存储引擎支持的锁是不同的,比如MyISAM只有表锁,而InnoDB既支持表锁又支持行锁。
下图展示了InnoDB不同锁类型之间的关系:
图中的概念比较多不好理解,下面依次进行说明。
? 乐观锁是相对悲观锁而言的,乐观锁假设数据一般情况下不会造成冲突,所在在数据进行提交更新时,才会对数据的冲突与否进行检测,如果发现冲突了,则返回给用户错误信息,让用户决定如何处理,其核心是基于CAS算法。乐观锁适用于读多写少的场景,可以提高程序吞吐量。
? Mysql自带的是没有乐观锁的,但是可以通过表上加个version字段来实现自己乐观锁。
假如要更新一个用户的年龄,可以这样做:
id | Name | Age | Version |
---|---|---|---|
3 | 张三 | 26 | 1 |
更新张三的年龄为27,注意where条件带上版本号。update user set age = 27,version = 2 where id = 3 and version = 1;
如果更新的结果是1则表示更新成功了,如果是0则表示更新失败需要重新尝试。
? 悲伤锁就是在每次操作数据时,都悲观地认为会出现数据冲突,所以必须先获取到数据的锁再对其修改。传统的关系型数据库用的就是悲观锁,还有JDK中的synchronized关键字等。悲观锁主要分为共享锁和排他锁。
共享锁【shared locks】,又叫读锁,顾名思义,共享锁就是多个事务对同一个数据可以共享一把锁,都能访问到数据,但是只能读不能修改。
如何获取共享锁?
select * from user where id = 3 lock in share mode;
注意:在有事务获取到了共享锁之后,其他事务是不能做insert/update/delete操作的,因为insert/update/delete语句会自动加上排他锁。
排他锁【exclusive locks】,又叫写锁,顾名思义,排他锁就是不能与其他锁并存,如果一个事务获取了一个数据行的排他锁,其他事务就不能再获取该行的其他锁,包括共享锁和排他锁,但是获取排他锁的事务是可以对数据进行读取和修改。
如何获取排他锁?
在sql语句后加上for update即可。
select * from user where id = 3 for update
表锁,顾名思义就是对整张表加锁,是Mysql各存储引擎中最大粒度的锁定机制。
优点:实现逻辑简单,获取锁和释放锁的速度很快,由于每次都是将整张表锁定所以可以很好的避免死锁问题。
缺点:锁定颗粒度大导致出现锁定资源争用的概率高,并发度低。
行锁,顾名思义就是对表中的某行数据加锁,锁定颗粒度最小。
优点:发生锁冲突的概率低,并发处理能力强。
缺点:由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。
如何判断使用的是行锁还是表锁?
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,所以只有在通过索引条件检索数据时才会用行锁,否则使用表锁。并且该索引不能失效,否则都会从行锁升级为表锁。所以在使用select for update时,where 子句一定要带上索引,否则极容易造成性能问题。
行锁又细分三种实现算法:
record lock:专门对索引项加锁;
gap lock:间隙锁,是对索引之间的间隙加锁;
Next-key lock:是前面两种的组合,对索引及其之间的间隙加锁;
页面锁出现比较少,它的特点是开销和加锁时间界于表锁和行锁之间,会出现死锁,锁定粒度界于表锁和行锁之间,并发度一般。
? 死锁(Deadlock) 所谓死锁:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁。
死锁的四个必要条件:
互斥条件:一个资源每次只能被一个进程使用。
占有且等待:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
不可强行占有:进程已获得的资源,在末使用完之前,不能强行剥夺。
循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
首先创建一张订单记录表,用于做订单的幂等性校验防止重复生成订单。
CREATE TABLE `order_record` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`order_no` int(11) DEFAULT NULL,
`status` int(4) DEFAULT NULL,
`create_date` datetime(0) DEFAULT NULL,
PRIMARY KEY (`id`) USING BTREE,
INDEX `idx_order_status`(`order_no`,`status`) USING BTREE
) ENGINE = InnoDB
事务A | 事务B |
---|---|
关闭自动提交事务,set autocommit = 0; | set autocommit = 0; |
select id from order_record where order_no = 4 for update;//检查是否存在订单号为4的订单 | |
select id from order_record where order_no = 5 for update;//检查是否存在订单号为5的订单 | |
//如果没有则插入信息 insert into order_record(order_no,status,create_date) values(4,1,‘2020-10-04 10:56:00‘); 此时锁等待中... |
|
//如果没有则插入信息 insert into order_record(order_no,status,create_date) values(5,1,‘2020-10-04 10:56:00‘); |
|
返回结果表明发生死锁,ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction | |
COMMIT;(未完成) | COMMIT;(未完成) |
分析:
由于order_no列为非唯一索引,而且此时是RR事务隔离级别,所以SELECT 的加锁类型是gap lock,而且gap范围是(4,+∞)。
当我们执行插入 SQL 时,会在插入间隙上再次获取插入意向锁。插入意向锁其实也是一种 gap 锁,它与 gap lock 是冲突的,事务 A 和事务 B 都持有间隙 (4,+∞)的 gap 锁,而接下来的插入操作为了获取到插入意向锁,都在等待对方事务的 gap 锁释放,于是就造成了循环等待,导致死锁。
InnoDB 存储引擎的主键索引为聚簇索引,其它索引为辅助索引。如果两个更新事务使用了不同的辅助索引,或者一个使用辅助索引,一个使用了聚簇索引,就都有可能导致锁资源的循环等待,造成死锁。
步骤:
首先,order_record表存在以下数据。
然后打开两个窗口
事务A | 事务B |
---|---|
BEGIN; | BEGIN; |
update order_record set status = 1 where order_no = 4; | |
mysql> update order_record set status = 1 where id = 4; ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction//发生了死锁 |
分析:
事务A | 事务B |
---|---|
首先获取idx_order_status辅助索引 | |
获取主键索引的行锁 | |
根据辅助索引获取主键索引,再获取主键索引的行锁 | |
更新status列时,需要idx_order_status辅助索引 |
所以再更新数据时,要尽量根据主键来更新,可以有效避免死锁发生。
通常有以下手段可以预防死锁的发生:
如果真的发生了数据库死锁,也有以下方式处理:
查看当前的事务
SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX;
查看当前锁定的事务
SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS;
查看当前等锁的事务
SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS;
杀死进程 kill pid
而且MySQL默认开启了死锁检测机制,当检测到死锁后会选择一个最小(锁定资源最少的)的事务进行回滚。
平常很少写MySQL相关的文章,其实MySQL中的门道还是挺多的,本文关于间隙锁等概念讲的比较简单,推荐博客《mysql间隙锁》。
以后可能会再写一篇关于索引的,也有可能不会(主要是懒??),如果本文哪里有错误,请多指教。
标签:乐观锁 from href 一个 schema innodb nsa 申请 next
原文地址:https://www.cnblogs.com/2YSP/p/13768507.html