标签:style blog http io ar os 使用 sp for
说明:本文的环境为CENTOS 5.5 64 Bit /Mysql 5.1.50
简介:使用Mysql有一段时间了,期间做了不少关于Mysql优化、设计、维护的工作,这两天有时间做一下简单的总结,方便自己回忆,同时也希望能对大家有点帮助.
I 硬件配置优化
II 操作系统级优化
[zhangxy@dowload_server1 ~]$ cat /etc/fstab
LABEL=/ / ext3 defaults,noatime,nodiratime 1 1
/dev/sda5 /data xfs defaults,noatime,nodiratime 1 2
net.ipv4.tcp_keepalive_time=7200
net.ipv4.tcp_max_syn_backlog=1024
net.ipv4.tcp_syncookies=1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.neigh.default.gc_thresh3 = 2048
net.ipv4.neigh.default.gc_thresh2 = 1024
net.ipv4.neigh.default.gc_thresh1 = 256
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.default.forwarding = 1
net.ipv4.conf.default.proxy_arp = 0
net.ipv4.tcp_syncookies = 1
net.core.netdev_max_backlog = 2048
net.core.dev_weight = 64
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.ipv4.tcp_rfc1337 = 1
net.ipv4.tcp_sack = 0
net.ipv4.tcp_fin_timeout = 20
net.ipv4.tcp_keepalive_probes = 5
net.ipv4.tcp_max_orphans = 32768
net.core.optmem_max = 20480
net.core.rmem_default = 16777216
net.core.rmem_max = 16777216
net.core.wmem_default = 16777216
net.core.wmem_max = 16777216
net.core.somaxconn = 500
net.ipv4.tcp_orphan_retries = 1
net.ipv4.tcp_max_tw_buckets = 18000
net.ipv4.ip_forward = 0
net.ipv4.conf.default.proxy_arp = 0
net.ipv4.conf.all.rp_filter = 1
kernel.sysrq = 1
net.ipv4.conf.default.send_redirects = 1
net.ipv4.conf.all.send_redirects = 0
net.ipv4.ip_local_port_range = 5000 65000
kernel.shmmax = 167108864
vm.swappiness=0
Vim /etc/security/limits.conf
加上
* soft nofile 65535
* hard nofile 65535
/dev/sda5 /data xfs defaults,noatime,nodiratime 1 2
III Mysql设计优化
III.1存储引擎的选择
III.2命名规则
III.3字段类型选择
字段类型的选择的一般原则:
原因:更小的字段类型更小的字符数占用更少的内存,占用更少的磁盘空间,占用更少的磁盘IO,以及占用更少的带宽。
III.3.1 整型:
见如下图:
类型 |
字节 |
最小值 |
最大值 |
(带符号的/无符号的) |
(带符号的/无符号的) |
||
TINYINT |
1 |
-128 |
127 |
0 |
255 |
||
SMALLINT |
2 |
-32768 |
32767 |
0 |
65535 |
||
MEDIUMINT |
3 |
-8388608 |
8388607 |
0 |
16777215 |
||
INT |
4 |
-2147483648 |
2147483647 |
0 |
4294967295 |
||
BIGINT |
8 |
-9223372036854775808 |
9223372036854775807 |
0 |
18446744073709551615 |
根据满足需求的最小整数为选择原则,能用INT的就不要用BIGINT。
用无符号INT存储IP,而非CHAR(15)。
III.3.2 浮点型:
类型 |
字节 |
精度类型 |
使用场景 |
FLOAT(M,D) |
4 |
单精度 |
精度要求不高,数值比较小 |
DOUBLE(M,D)(REAL) |
8 |
双精度 |
精度要求不高,数值比较大 |
DECIMAL(M,D)(NUMERIC) |
M+2 |
自定义精度 |
精度要求很高的场景 |
III.3.3 时间类型
类型 |
取值范围 |
存储空间 |
零值表示法 |
DATE |
1000-01-01~9999-12-31 |
3字节 |
0000-00-00 |
TIME |
-838:59:59~838:59:59 |
3字节 |
00:00:00 |
DATETIME |
1000-01-01 00:00:00~9999-12-31 23:59:59 |
8字节 |
0000-00-00 00:00:00 |
TIMESTAMP |
19700101000000~2037年的某个时刻 |
4字节 |
00000000000000 |
YEAR |
YEAR(4):1901~2155 YEAR(2):1970~2069 |
1字节 |
0000 |
III.3.4 字符类型
类型 |
最大长度 |
占用存储空间 |
CHAR[(M)] |
M字节 |
M字节 |
VARCHAR[(M)] |
M字节 |
M+1字节 |
TINYBLOD,TINYTEXT |
2^8-1字节 |
L+1字节 |
BLOB,TEXT |
2^16-1字节 |
L+2 |
MEDIUMBLOB,MEDIUMTEXT |
2^24-1字节 |
L+3 |
LONGBLOB,LONGTEXT |
2^32-1字节 |
L+4 |
ENUM(‘value1‘,‘value2‘,...) |
65535个成员 |
1或2字节 |
SET(‘value1‘,‘value2‘,...) |
64个成员 |
1,2,3,4或8字节 |
注:L表示可变长度的意思
对于varchar和char的选择要根据引擎和具体情况的不同来选择,主要依据如下原则:
III.4编码选择
单字节 latin1
多字节 utf8(汉字占3个字节,英文字母占用一个字节)
如果含有中文字符的话最好都统一采用utf8类型,避免乱码的情况发生。
III.5主键选择原则
注:这里说的主键设计主要是针对INNODB引擎
推荐采用数值类型做主键并采用auto_increment属性让其自动增长。
III.6其他需要注意的地方
尽可能设置每个字段为NOT NULL,除非有特殊的需求,原因如下:
索引的缺点:极大地加速了查询,减少扫描和锁定的数据行数。
索引的缺点:占用磁盘空间,减慢了数据更新速度,增加了磁盘IO。
添加索引有如下原则:
适当的使用冗余的反范式设计,以空间换时间有的时候会很高效。
IV Mysql软件优化
V Mysql配置优化
注意:全局参数一经设置,随服务器启动预占用资源。
mysql索引缓冲,如果是采用myisam的话要重点设置这个参数,根据(key_reads/key_read_requests)判断
INNODB 数据、索引、日志缓冲最重要的引擎参数,根据(hit riatos和FILE I/O)判断
线程连接的超时时间,尽量不要设置很大,推荐10s
服务器允许的最大连接数,尽量不要设置太大,因为设置太大的话容易导致内存溢出,需要通过如下公式来确定:
SET @k_bytes = 1024;
SET @m_bytes = @k_bytes * 1024;
SET @g_bytes = @m_bytes * 1024;
SELECT
(
@@key_buffer_size + @@query_cache_size + @@tmp_table_size+
@@innodb_buffer_pool_size + @@innodb_additional_mem_pool_size+
@@innodb_log_buffer_size+
@@max_connections *
( @@read_buffer_size + @@read_rnd_buffer_size + @@sort_buffer_size+
@@join_buffer_size + @@binlog_cache_size + @@thread_stack
) )
/ @g_bytes AS MAX_MEMORY_USED_GB;
线程并发利用数量,(cpu+disk)*2,根据(os中显示的请求队列和tickets)判断
获得更快的--ORDER BY,GROUP BY,SELECT DISTINCT,UNION DISTINCT
当根据键进行分类操作时获得更快的--ORDER BY
join连接使用全表扫描连接的缓冲大小,根据select_full_join判断
全表扫描时为查询预留的缓冲大小,根据select_scan判断
临时内存表的设置,如果超过设置就会转化成磁盘表,根据参数(created_tmp_disk_tables)判断
记录INNODB引擎的redo log文件,设置较大的值意味着较长的恢复时间。
Linux系统可以使用O_DIRECT处理数据文件,避免OS级别的cache,O_DIRECT模式提高数据文件和日志文件的IO提交性能
VI Mysql语句级优化
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,
Sql 代码 : select id from t where num is null;
可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:
Sql 代码 : select id from t where num=0;
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,
Sql 代码 : select id from t where num=10 or num=20;
可以这样查询:
Sql 代码 : select id from t where num=10 union all select id from t where num=20;
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
Sql 代码 : select id from t where num in(1,2,3);
对于连续的数值,能用 between 就不要用 in 了:
Sql 代码 : select id from t where num between 1 and 3;
6.下面的查询也将导致全表扫描:
Sql 代码 : select id from t where name like ‘c%‘;
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为 SQL 只有在运行时才会解析局部变量,但优 化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计 划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
Sql 代码 : select id from t where num=@num ;
可以改为强制查询使用索引:
Sql 代码 : select id from t with(index(索引名)) where num=@num ;
8.应尽量避免在 where 子句中对字段进行表达式操作, 这将导致引擎放弃使用索引而进行全表扫描。
Sql 代码 : select id from t where num/2=100;
可以这样查询:
Sql 代码 : select id from t where num=100*2;
9.应尽量避免在 where 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
Sql 代码 : select id from t where substring(name,1,3)=‘abc‘;#name 以 abc 开头的 id
应改为:
Sql 代码 : select id from t where name like ‘abc%‘;
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用 索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件 时才能保证系统使用该索引, 否则该索引将不会 被使用, 并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
Sql 代码 : select col1,col2 into #t from t where 1=0;
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
Sql 代码 : create table #t(…);
13.很多时候用 exists 代替 in 是一个好的选择:
Sql 代码 : select num from a where num in(select num from b);
用下面的语句替换:
Sql 代码 : select num from a where exists(select 1 from b where num=a.num);
14.并不是所有索引对查询都有效,SQL 是根据表中数据来进行查询优化的,当索引列有大量数据重复时, SQL 查询可能不会去利用索引,如一表中有字段 ***,male、female 几乎各一半,那么即使在 *** 上建 了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过 6 个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列, 因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并 会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言 只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar , 因为首先变长字段存储空间小, 可以节省存储空间, 其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用 表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先 create table,然后 insert.
24.如果使用到了临时表, 在存储过程的最后务必将所有的临时表显式删除, 先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过 1 万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更 有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF .无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。 sql 优化方法使用索引来更快地遍历表。 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在对各种查询的分析和预测上。一般来说:
a.有大量重复值、且经常有范围查询( > ,< ,> =,< =)和 order by、group by 发生的列,可考虑建立集群索引;
b.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;
c.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。索引虽有助于提高性能但 不是索引越多越好,恰好相反过多的索引会导致系统低效。用户在表中每加进一个索引,维护索引集合就 要做相应的更新工作。
30.定期分析表和检查表。
分析表的语法:ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tb1_name[, tbl_name]...
以上语句用于分析和存储表的关键字分布,分析的结果将可以使得系统得到准确的统计信息,使得SQL能够生成正确的执行计划。如果用户感觉实际执行计划并不是预期的执行计划,执行一次分析表可能会解决问题。在分析期间,使用一个读取锁定对表进行锁定。这对于MyISAM,DBD和InnoDB表有作用。
例如分析一个数据表:analyze table table_name
检查表的语法:CHECK TABLE tb1_name[,tbl_name]...[option]...option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
检查表的作用是检查一个或多个表是否有错误,CHECK TABLE 对MyISAM 和 InnoDB表有作用,对于MyISAM表,关键字统计数据被更新
CHECK TABLE 也可以检查视图是否有错误,比如在视图定义中被引用的表不存在。
31.定期优化表。
优化表的语法:OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tb1_name [,tbl_name]...
如果删除了表的一大部分,或者如果已经对含有可变长度行的表(含有 VARCHAR、BLOB或TEXT列的表)进行更多更改,则应使用OPTIMIZE TABLE命令来进行表优化。这个命令可以将表中的空间碎片进行合并,并且可以消除由于删除或者更新造成的空间浪费,但OPTIMIZE TABLE 命令只对MyISAM、 BDB 和InnoDB表起作用。
例如: optimize table table_name
注意: analyze、check、optimize执行期间将对表进行锁定,因此一定注意要在MySQL数据库不繁忙的时候执行相关的操作。
补充:
1、在海量查询时尽量少用格式转换。
2、ORDER BY 和 GROPU BY:使用 ORDER BY 和 GROUP BY 短语,任何一种索引都有助于 SELECT 的性能提高。
3、任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移 至等号右边。
4、IN、OR 子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把子句拆开。拆开的子 句中应该包含索引。
5、只要能满足你的需求,应尽可能使用更小的数据类型:例如使用 MEDIUMINT 代替 INT
6、尽量把所有的列设置为 NOT NULL,如果你要保存 NULL,手动去设置它,而不是把它设为默认值。
7、尽量少用 VARCHAR、TEXT、BLOB 类型
8、如果你的数据只有你所知的少量的几个。最好使用 ENUM 类型
9、正如 graymice 所讲的那样,建立索引。
10、合理用运分表与分区表提高数据存放和提取速度。
转自:http://blog.chinaunix.net/uid-20639775-id-3154234.html
标签:style blog http io ar os 使用 sp for
原文地址:http://www.cnblogs.com/welcoming/p/4091830.html