码迷,mamicode.com
首页 > 编程语言 > 详细

贪心算法:合并区间

时间:2021-01-02 10:31:58      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:png   return   经典题目   意图   重置   获取   c++   合并   alt   

?
最近文章阅读量少了很多啊打卡也少了, 是不是年底了很多录友在忙期末考试啊,哈哈。

?
56. 合并区间
题目链接:https://leetcode-cn.com/problems/merge-intervals/

给出一个区间的集合,请合并所有重叠的区间。

示例 1:
输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
输出: [[1,6],[8,10],[15,18]]
解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:
输入: intervals = [[1,4],[4,5]]
输出: [[1,5]]
解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
注意:输入类型已于2019年4月15日更改。请重置默认代码定义以获取新方法签名。

提示:

  • intervals[i][0] <= intervals[i][1]

思路
大家应该都感觉到了,此题一定要排序,那么按照左边界排序,还是右边界排序呢?

都可以!

那么我按照左边界排序,排序之后局部最优:每次合并都取最大的右边界,这样就可以合并更多的区间了,整体最优:合并所有重叠的区间。

局部最优可以推出全局最优,找不出反例,试试贪心。

那有同学问了,本来不就应该合并最大右边界么,这和贪心有啥关系?

有时候贪心就是常识!哈哈

按照左边界从小到大排序之后,如果 intervals[i][0] < intervals[i - 1][1] 即intervals[i]左边界 < intervals[i - 1]右边界,则一定有重复,因为intervals[i]的左边界一定是大于等于intervals[i - 1]的左边界。

即:intervals[i]的左边界在intervals[i - 1]左边界和右边界的范围内,那么一定有重复!

这么说有点抽象,看图:(「注意图中区间都是按照左边界排序之后了」

技术图片
56.合并区间
知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?

其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

C++代码如下:


class Solution {
public:
    // 按照区间左边界从小到大排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0];
    }
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result;
        sort(intervals.begin(), intervals.end(), cmp);
        bool flag = false; // 标记最后一个区间有没有合并
        int length = intervals.size();

        for (int i = 1; i < length; i++) {
            int start = intervals[i - 1][0];    // 初始为i-1区间的左边界
            int end = intervals[i - 1][1];      // 初始i-1区间的右边界
            while (i < length && intervals[i][0] <= end) { // 合并区间
                end = max(end, intervals[i][1]);    // 不断更新右区间
                if (i == length - 1) flag = true;   // 最后一个区间也合并了
                i++;                                // 继续合并下一个区间
            }
            // start和end是表示intervals[i - 1]的左边界右边界,所以最优intervals[i]区间是否合并了要标记一下
            result.push_back({start, end}); 
        }
        // 如果最后一个区间没有合并,将其加入result
        if (flag == false) {
            result.push_back({intervals[length - 1][0], intervals[length - 1][1]});
        }
        return result;
    }
};

当然以上代码有冗余一些,可以优化一下,如下:(思路是一样的)


class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result;
        // 排序的参数使用了lamda表达式
        sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});

        result.push_back(intervals[0]);
        for (int i = 1; i < intervals.size(); i++) {
            if (result.back()[1] >= intervals[i][0]) { // 合并区间
                result.back()[1] = max(result.back()[1], intervals[i][1]);
            } else {
                result.push_back(intervals[i]);
            }
        }
        return result;
    }
};
  • 时间复杂度:O(nlogn) ,有一个快排
  • 空间复杂度:O(1),不算result数组(返回值所需容器占的空间)
    总结
    对于贪心算法,很多同学都是:「如果能凭常识直接做出来,就会感觉不到自己用了贪心, 一旦第一直觉想不出来, 可能就一直想不出来了」

跟着「代码随想录」刷题的录友应该感受过,贪心难起来,真的难。

那应该怎么办呢?

正如我贪心系列开篇词关于贪心算法,你该了解这些!中讲解的一样,贪心本来就没有套路,也没有框架,所以各种常规解法需要多接触多练习,自然而然才会想到。

「代码随想录」会把贪心常见的经典题目覆盖到,大家只要认真学习打卡就可以了。

就酱,学算法,就在「代码随想录」,值得介绍给身边的朋友同学们!

打算从头开始打卡的录友,可以在「算法汇总」这里找到历史文章,很多录友都在从头打卡,你并不孤单!

技术图片

-------end-------

我将算法学习相关的资料已经整理到了Github :https://github.com/youngyangyang04/leetcode-master,里面还有leetcode刷题攻略、各个类型经典题目刷题顺序、思维导图看一看一定会有所收获,如果给你有帮助给一个star支持一下吧

贪心算法:合并区间

标签:png   return   经典题目   意图   重置   获取   c++   合并   alt   

原文地址:https://blog.51cto.com/15069438/2576194

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!