标签:子序列 ret strong 回溯 支持 result 深度 经典 有序数组
给「代码随想录」一个星标吧!通知:我将公众号文章和学习相关的资料整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上学习,可以fork到自己仓库,顺便也给个star支持一波吧!
?
491.递增子序列
题目链接:https://leetcode-cn.com/problems/increasing-subsequences/
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
示例:
输入: [4, 6, 7, 7] 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]
说明:
这又是子集,又是去重,是不是不由自主的想起了刚刚讲过的回溯算法:求子集问题(二)。
就是因为太像了,更要注意差别所在,要不就掉坑里了!
在回溯算法:求子集问题(二)中我们是通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
「所以不能使用之前的去重逻辑!」
本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。
为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:
回溯三部曲
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:
if (path.size() > 1) {
result.push_back(path);
// 注意这里不要加return,因为要取树上的所有节点
}
在图中可以看出,同层上使用过的元素就不能在使用了,「注意这里和回溯算法:求子集问题(二)中去重的区别」。
「本题只要同层重复使用元素,递增子序列就会重复」,而回溯算法:求子集问题(二)中是排序之后看相邻元素是否重复使用。
还有一种情况就是如果选取的元素小于子序列最后一个元素,那么就不能是递增的,所以也要pass掉。
那么去重的逻辑代码如下:
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
判断nums[i] < path.back()之前一定要判断path是否为空,所以是!path.empty() && nums[i] < path.back()。
uset.find(nums[i]) != uset.end()判断nums[i]在本层是否使用过。
那么单层搜索代码如下:
unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
「对于已经习惯写回溯的同学,看到递归函数上面的uset.insert(nums[i]);,下面却没有对应的pop之类的操作,应该很不习惯吧,哈哈」
「这也是需要注意的点,unordered_set<int> uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!」
最后整体C++代码如下:
C++代码
// 版本一
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
if (path.size() > 1) {
result.push_back(path);
// 注意这里不要加return,要取树上的节点
}
unordered_set<int> uset; // 使用set对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
result.clear();
path.clear();
backtracking(nums, 0);
return result;
}
};
优化
以上代码用我用了unordered_set<int>来记录本层元素是否重复使用。
「其实用数组来做哈希,效率就高了很多」。
注意题目中说了,数值范围[-100,100],所以完全可以用数组来做哈希。
程序运行的时候对unordered_set 频繁的insert,unordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。
那么优化后的代码如下:
// 版本二
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
if (path.size() > 1) {
result.push_back(path);
}
int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| used[nums[i] + 100] == 1) {
continue;
}
used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
result.clear();
path.clear();
backtracking(nums, 0);
return result;
}
};
这份代码在leetcode上提交,要比版本一耗时要好的多。
「所以正如在哈希表:总结篇!(每逢总结必经典)中说的那样,数组,set,map都可以做哈希表,而且数组干的活,map和set都能干,但如何数值范围小的话能用数组尽量用数组」。
总结
本题题解清一色都说是深度优先搜索,但我更倾向于说它用回溯法,而且本题我也是完全使用回溯法的逻辑来分析的。
相信大家在本题中处处都能看到是回溯算法:求子集问题(二)的身影,但处处又都是陷阱。
「对于养成思维定式或者套模板套嗨了的同学,这道题起到了很好的警醒作用。更重要的是拓展了大家的思路!」
就酱,如果感觉「代码随想录」很干货,就帮Carl宣传一波吧!
标签:子序列 ret strong 回溯 支持 result 深度 经典 有序数组
原文地址:https://blog.51cto.com/15069438/2576408