码迷,mamicode.com
首页 > 编程语言 > 详细

回溯算法:求组合总和(二)

时间:2021-01-02 11:00:22      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:ons   c++   方法   组合   sum   art   ble   回溯算法   https   

给「代码随想录」一个星标吧!
?
我将公众号文章和学习相关的资料整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上学习,可以fork到自己仓库,顺便也给个star支持一波吧

?
第39题. 组合总和
题目链接:https://leetcode-cn.com/problems/combination-sum/

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。
    示例 1:
    输入:candidates = [2,3,6,7], target = 7,
    所求解集为:
    [
    [7],
    [2,2,3]
    ]

示例 2:
输入:candidates = [2,3,5], target = 8,
所求解集为:
[
[2,2,2,2],
[2,3,3],
[3,5]
]

思路
题目中的「无限制重复被选取,吓得我赶紧想想 出现0 可咋办」,然后看到下面提示:1 <= candidates[i] <= 200,我就放心了。

本题和回溯算法:求组合问题!,回溯算法:求组合总和!和区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。

本题搜索的过程抽象成树形结构如下:

技术图片

注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!

而在回溯算法:求组合问题!和回溯算法:求组合总和! 中都可以知道要递归K层,因为要取k个元素的组合。

回溯三部曲

  • 递归函数参数
    这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)

首先是题目中给出的参数,集合candidates, 和目标值target。

此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。

「本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?」

我举过例子,如果是一个集合来求组合的话,就需要startIndex,例如:回溯算法:求组合问题!,回溯算法:求组合总和!。

如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:回溯算法:电话号码的字母组合

「注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路,后面我再讲解排列的时候就重点介绍」

代码如下:


vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex) 
  • 递归终止条件
    在如下树形结构中:

技术图片

从叶子节点可以清晰看到,终止只有两种情况,sum大于target和sum等于target。

sum等于target的时候,需要收集结果,代码如下:


if (sum > target) {
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}
  • 单层搜索的逻辑
    单层for循环依然是从startIndex开始,搜索candidates集合。

「注意本题和回溯算法:求组合问题!、回溯算法:求组合总和!的一个区别是:本题元素为可重复选取的」

如何重复选取呢,看代码,注释部分:


for (int i = startIndex; i < candidates.size(); i++) {
    sum += candidates[i];
    path.push_back(candidates[i]);
    backtracking(candidates, target, sum, i); // 关键点:不用i+1了,表示可以重复读取当前的数
    sum -= candidates[i];   // 回溯
    path.pop_back();        // 回溯
}

按照关于回溯算法,你该了解这些!中给出的模板,不难写出如下C++完整代码:


// 版本一
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum > target) {
            return;
        }
        if (sum == target) {
            result.push_back(path);
            return;
        }

        for (int i = startIndex; i < candidates.size(); i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数
            sum -= candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

剪枝优化
在这个树形结构中:

技术图片

以及上面的版本一的代码大家可以看到,对于sum已经大于target的情况,其实是依然进入了下一层递归,只是下一层递归结束判断的时候,会判断sum > target的话就返回。

其实如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了。

那么可以在for循环的搜索范围上做做文章了。

「对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历」

如图:

技术图片

for循环剪枝代码如下:


for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) 

整体代码如下:(注意注释的部分)


class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum > target) {
            return;
        }
        if (sum == target) {
            result.push_back(path);
            return;
        }

        // 如果 sum + candidates[i] > target 就终止遍历
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i);
            sum -= candidates[i];
            path.pop_back();

        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        sort(candidates.begin(), candidates.end()); // 需要排序
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

总结
本题和我们之前讲过的回溯算法:求组合问题!、回溯算法:求组合总和!有两点不同:

  • 组合没有数量要求
  • 元素可无限重复选取
    针对这两个问题,我都做了详细的分析。

并且给出了对于组合问题,什么时候用startIndex,什么时候不用,并用回溯算法:电话号码的字母组合做了对比。

最后还给出了本题的剪枝优化,这个优化如果是初学者的话并不容易想到。

「在求和问题中,排序之后加剪枝是常见的套路!」

可以看出我写的文章都会大量引用之前的文章,就是要不断作对比,分析其差异,然后给出代码解决的方法,这样才能彻底理解题目的本质与难点。

「就酱,如果感觉很给力,就帮Carl宣传一波吧,奥利给!」

回溯算法:求组合总和(二)

标签:ons   c++   方法   组合   sum   art   ble   回溯算法   https   

原文地址:https://blog.51cto.com/15069438/2576397

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!