标签:__name__ 结合 start arc == ret splay 矩阵 输出
有向带权图的单源最短路径经典算法是dijkstra,下面就对算法的过程和代码实现进行记录
算法过程:
1、数据结构:图的带权邻接矩阵G.Edge[u][i],如果u到i有边则G.Edge[u][i]等于<u,i>边的权值;否则G.Edge[u][i]等于∞。
一维数组dist[i]记录从起始点到i节点的最短路径长度,一维数组p[i]记录i节点最短路径的前驱
2、初始化:令集合S={u},其中u是起始点,对于V-S集合所有顶点i,初始化dist[i]=G.Edge[u][i],其中集合V是所有顶点的集合。如果i是u的邻接点,初始化p[i]=u,否则p[i]=-1
3、找最小:在集合V-S中按照贪心策略在dist中找出最小值dist[i],则顶点i就是离源点u最近的节点(注意:此处找到的最小i并不一定就是上一步找到节点的邻接点)
4、将找到的i节点加入到s集群,并更新V-S
5、判断是否结束:如果V-S为空则搜索结束,否则到步骤6
6、对结合V-S中与节点i邻接的顶点j,如果有dist[j]>dist[i]+G.Edge[i][j]则dist[j]=dist[i]+G.Edge[i][j];更新p[j]=i,继续执行步骤3
代码实现:
#!/usr/bin/env python # -*- coding:utf-8 -*- graphNodeList = [] #图存储节点信息 graphAdjMatrix = [] #有向权重图邻接矩阵 searchNodeInfo = [] #djstla最短距离已经遍历的节点 dist = [] #存储最短路径开销 p = [] #djstla最短路径每个顶点的直接前驱 MAX = 100000 #str切分后给列表赋值格式 def acquireNode(): node_list = input("请输入途中所有的点,以空格分隔:") for nodeInfo in node_list.strip().split(" "): graphNodeList.append(nodeInfo) #根据输入信息填写邻接矩阵 def acquireSideUndig(): print("请输入图的所有边信息,格式为边的两个顶点,使用空格分隔。 eg:a b,如果全部信息输入完毕请输入end") while True: tempSide = input(">:") if tempSide.strip().lower() == "end": print("输入结束") break tempNodeList = tempSide.strip().split(" ") if len(tempNodeList) == 2: if tempNodeList[0] in graphNodeList and tempNodeList[1] in graphNodeList: createUndigraphAdjMatrix(tempNodeList[0], tempNodeList[1]) else: print("边信息输入有误,请重新输入") continue else: print("输入有误请重新输入") continue def acquireSideDig(): print("请输入图的所有边信息,格式为边的两个顶点,使用空格分隔。 eg:a b,如果全部信息输入完毕请输入end") while True: tempSide = input(">:") if tempSide.strip().lower() == "end": print("输入结束") break tempNodeList = tempSide.strip().split(" ") if len(tempNodeList) == 2: if tempNodeList[0] in graphNodeList and tempNodeList[1] in graphNodeList: createDigraphAdjMatrix(tempNodeList[0], tempNodeList[1]) else: print("边信息输入有误,请重新输入") continue else: print("输入有误请重新输入") continue def acquireSideDigWeight(): print("请输入图的所有边信息,格式为边的两个顶点和权重,使用空格分隔。 eg:a b weight,如果全部信息输入完毕请输入end") while True: tempSide = input(">:") if tempSide.strip().lower() == "end": print("输入结束") break tempNodeList = tempSide.strip().split(" ") if len(tempNodeList) == 3: if tempNodeList[0] in graphNodeList and tempNodeList[1] in graphNodeList: createDigraphAdjMatrixWeight(tempNodeList[0], tempNodeList[1], int(tempNodeList[2])) else: print("边信息输入有误,请重新输入") continue else: print("输入有误请重新输入") continue #初始化邻接矩阵;注意多维数组初始化格式以及数据的浅拷贝坑 def initGraphAdjMatrixWeight(nodeNum): for row in range(nodeNum): tempList = [] for column in range(nodeNum): tempList.append(MAX) graphAdjMatrix.append(tempList) #根据输入顶点信息完成邻接表 def createUndigraphAdjMatrix(node0, node1): tempIndex1 = graphNodeList.index(node0) tempIndex2 = graphNodeList.index(node1) graphAdjMatrix[tempIndex1][tempIndex2] = 1 graphAdjMatrix[tempIndex2][tempIndex1] = 1 def createDigraphAdjMatrix(node0, node1): tempIndex1 = graphNodeList.index(node0) tempIndex2 = graphNodeList.index(node1) graphAdjMatrix[tempIndex1][tempIndex2] = 1 def createDigraphAdjMatrixWeight(node0, node1, weight): tempIndex1 = graphNodeList.index(node0) tempIndex2 = graphNodeList.index(node1) graphAdjMatrix[tempIndex1][tempIndex2] = weight #pRINT输出空格和换行的写法 def printAdjMatrix(nodeNum): for row in range(nodeNum): for column in range(nodeNum): print(graphAdjMatrix[row][column], end=" ") print("") def maindigAdjMatWeight(): acquireNode() initGraphAdjMatrixWeight(len(graphNodeList)) acquireSideDigWeight() def dijkstra(startnode): ##初始化 for node in graphNodeList: # 初始化集合S,在集合S中的点在searchNodeInfo对应位置为True,默认初始化为False if node == startnode: searchNodeInfo.append(True) else: searchNodeInfo.append(False) for index, value in enumerate(graphAdjMatrix[graphNodeList.index(startnode)]): # 初始化前驱列表p;将startnode的邻接点前驱初始化为startnode,否则初始化为-1;初始化最短路径长度dist dist.append(value) if value < MAX: p.append(startnode) else: p.append(-1) ##将查找最小邻接点和使用最小邻接点更新dist p列表循环n-1次即可将所有数据更新完毕,起点已经是确定 for loop in range(len(graphNodeList)-1): ##找dist中searchpath为False的最小值. tempdist = [] for index, value in enumerate(searchNodeInfo): if value is False: tempdist.append(dist[index]) #根据找到的最小值更新searchPath,判断节点是否查询完成;查询完成程序返回 tempindex = dist.index(sorted(tempdist)[0]) searchNodeInfo[tempindex] = True if False not in searchNodeInfo: printdijkstra(startnode) return 0 #否则使用新加到search的节点更新其邻接点的dist值和p前驱 for index, value in enumerate(graphAdjMatrix[tempindex]): if searchNodeInfo[index] is False and dist[index] > dist[tempindex] + value: dist[index] = dist[tempindex] + value p[index] = graphNodeList[tempindex] printdijkstra(startnode) #输出原始节点到其它节点的最短路径长度和路径上的顶点 def printdijkstra(startnode): for i in range(len(graphNodeList)): if i == graphNodeList.index(startnode): print("这是起点自己%s" %startnode) else: print("起始点到顶点%s的距离是%d" %(graphNodeList[i], dist[i]),end="。") print("访问路径为:", end=" ") temppath = [] temp_pi = i #找到顶点的所有前驱拼接起来即为最优路径 while True: if p[temp_pi] != -1: temppath.append(p[temp_pi]) temp_pi = graphNodeList.index(p[temp_pi]) else: break temppath.reverse() for path in temppath: print("%s->" % path, end="") print(graphNodeList[i]) if __name__ == "__main__": maindigAdjMatWeight() dijkstra(graphNodeList[0])
标签:__name__ 结合 start arc == ret splay 矩阵 输出
原文地址:https://www.cnblogs.com/flags-blog/p/14320515.html