标签:prope te pro abi you cal set purpose process perl
Perceptron
A perceptron is a neural network with just one layer,
It‘s a linear classifier that outputs a binary response variable.
Consequently, the algorithm is called a "linear binary classifier."
Linear Separability
Activation Function
An activation function is a mathematical function that is deployed on each unit in a neural network.
All units in a shared layer deploy the same activation function.
The purpose of activation functions is to enable neural networks to model complex, nonlinear phenomenon.
import numpy as np
import pandas as pd
import sklearn
from pandas import Series, DataFrame
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.linear_model import Perceptron
iris = datasets.load_iris()
X = iris.data
y = iris.target
X[0:10,]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1]])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
standardize = StandardScaler()
standardized_X_test = standardize.fit_transform(X_test)
standardized_X_train = standardize.fit_transform(X_train)
standardized_X_test[0:10,]
array([[ 0.60104076, -0.54300257, 1.03062704, 1.00726119],
[-0.14142136, 2.04272396, -1.19635601, -1.17060084],
[ 0.8131728 , -0.54300257, 0.87525613, 1.68784307],
[ 0.49497475, -0.28442992, 1.03062704, 1.00726119],
[-0.88388348, 0.7498607 , -1.09277541, -1.03448446],
[-1.20208153, -0.54300257, -1.09277541, -1.30671722],
[-0.56568542, 1.78415131, -0.9374045 , -0.89836809],
[-0.45961941, 0.7498607 , -1.14456571, -1.17060084],
[-0.88388348, -1.83586584, -0.26413055, 0.05444655],
[-0.98994949, 0.49128804, -1.0409851 , -1.17060084]])
perceptron = Perceptron(max_iter=50, eta0=0.15, tol=1e-3, random_state=15)
perceptron.fit(standardized_X_train, y_train.ravel())
Perceptron(eta0=0.15, max_iter=50, random_state=15)
y_pred = perceptron.predict(standardized_X_test)
print(y_test)
[2 0 2 2 0 0 0 0 1 0 0 0 1 2 0 2 2 0 1 2 2 1 1 1 2 1 2 0 0 0]
print(y_pred)
[2 0 2 2 0 0 0 0 1 0 0 0 1 1 0 2 2 0 1 1 2 1 1 1 2 1 2 0 0 0]
print(classification_report(y_test,y_pred))
precision recall f1-score support
0 1.00 1.00 1.00 13
1 0.78 1.00 0.88 7
2 1.00 0.80 0.89 10
accuracy 0.93 30
macro avg 0.93 0.93 0.92 30
weighted avg 0.95 0.93 0.93 30
Python for Data Science - A neural network with a Perceptron
标签:prope te pro abi you cal set purpose process perl
原文地址:https://www.cnblogs.com/keepmoving1113/p/14327357.html