码迷,mamicode.com
首页 > 系统相关 > 详细

TCP/IP协议栈在Linux内核中的运行时序分析

时间:2021-02-01 12:22:28      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:toc   进程   focus   world   发送数据包   except   优先   排队   realloc   

调研要求

  • 在深入理解Linux内核任务调度(中断处理、softirg、tasklet、wq、内核线程等)机制的基础上,分析梳理send和recv过程中TCP/IP协议栈相关的运行任务实体及相互协作的时序分析。

  • 编译、部署、运行、测评、原理、源代码分析、跟踪调试等

  • 应该包括时序图

1.Linux内核任务调度基础

1.1、Linux内核调度

 多任务操作系统分为非抢占式多任务和抢占式多任务。与大多数现代操作系统一样,Linux采用的是抢占式多任务模式。这表示对CPU的占用时间由操作系统决定的,具体为操作系统中的调度器。调度器决定了什么时候停止一个进程以便让其他进程有机会运行,同时挑选出一个其他的进程开始运行。

? 在Linux上调度策略决定了调度器是如何选择一个新进程的时间。调度策略与进程的类型有关,内核现有的调度策略如下:

0: 默认的调度策略,针对的是普通进程。
1:针对实时进程的先进先出调度。适合对时间性要求比较高但每次运行时间比较短的进程。
2:针对的是实时进程的时间片轮转调度。适合每次运行时间比较长得进程。
3:针对批处理进程的调度,适合那些非交互性且对cpu使用密集的进程。
SCHED_ISO:是内核的一个预留字段,目前还没有使用
5:适用于优先级较低的后台进程。
注:每个进程的调度策略保存在进程描述符task_struct中的policy字段

? 内核引入调度类(struct sched_class)说明了调度器应该具有哪些功能。内核中每种调度策略都有该调度类的一个实例。(比如:基于公平调度类为:fair_sched_class,基于实时进程的调度类实例为:rt_sched_class),该实例也是针对每种调度策略的具体实现。调度类封装了不同调度策略的具体实现,屏蔽了各种调度策略的细节实现。
? 调度器核心函数schedule()只需要调用调度类中的接口,完成进程的调度,完全不需要考虑调度策略的具体实现。调度类连接了调度函数和具体的调度策略。

1.2、中断机制

? 中断是指在CPU正常运行期间,由于内外部事件或由程序预先安排的事件引起的CPU暂时停止正在运行的程序,转而为该内部或外部事件或预先安排的事件服务的程序中去,服务完毕后再返回去继续运行被暂时中断的程序。

? 同步中断由CPU本身产生,又称为内部中断。这里同步是指中断请求信号与代码指令之间的同步执行,在一条指令执行完毕后,CPU才能进行中断,不能在执行期间。所以也称为异常(exception)。

? 异步中断是由外部硬件设备产生,又称为外部中断,与同步中断相反,异步中断可在任何时间产生,包括指令执行期间,所以也被称为中断(interrupt)。

? 异常又可分为可屏蔽中断(Maskable interrupt)和非屏蔽中断(Nomaskable interrupt)。而中断可分为故障(fault)、陷阱(trap)、终止(abort)三类。

? 从广义上讲,中断又可分为四类:中断故障陷阱终止

Linux中断机制由三部分组成:

  1. 中断子系统初始化:内核自身初始化过程中对中断处理机制初始化,例如中断的数据结构以及中断请求等。

  2. 中断或异常处理:中断处理过程,是指设备产生中断,并通过中断线将中断信号送往中断控制器,如果中断没有被屏蔽则会到达CPU的INTR引脚,CPU立即停止当前工作,根据获得中断向量号从IDT中找出门描述符,并执行相关中断程序。异常处理过程,是指异常是由CPU内部发生所以不会通过中断控制器,CPU直接根据中断向量号从IDT中找出门描述符,并执行相关中断程序。

    中断控制器处理主要有5个步骤:1.中断请求 2.中断相应 3.优先级比较 4.提交中断向量 5.中断结束。CPU处理流程主要有6个步骤:1.确定中断或异常的中断向量 2.通过IDTR寄存器找到IDT 3.特权检查 4.特权级发生变化,进行堆栈切换 5.如果是异常将异常代码压入堆栈,如果是中断则关闭可屏蔽中断 6.进入中断或异常服务程序执行。这里不再赘述6个步骤的具体流程。

  3. 中断API:为设备驱动提供API,例如注册,释放和激活等。

1.3、软中断(softirq)

? 软中断作为下半部机制的代表,是随着SMP(share memory processor)的出现应运而生的,它也是tasklet实现的基础(tasklet实际上只是在软中断的基础上添加了一定的机制)。软中断一般是“可延迟函数”的总称,有时候也包括了tasklet(请读者在遇到的时候根据上下文推断是否包含tasklet)。它的出现就是因为要满足上面所提出的上半部和下半部的区别,使得对时间不敏感的任务延后执行,软中断执行中断处理程序留给它去完成的剩余任务,而且可以在多个CPU上并行执行,使得总的系统效率可以更高。它的特性包括:

1)产生后并不是马上可以执行,必须要等待内核的调度才能执行。软中断不能被自己打断,只能被硬件中断打断(上半部)。

2)可以并发运行在多个CPU上(即使同一类型的也可以)。所以软中断必须设计为可重入的函数(允许多个CPU同时操作),因此也需要使用自旋锁来保护其数据结构。

1.4、tasklet

? 由于软中断必须使用可重入函数,这就导致设计上的复杂度变高,作为设备驱动程序的开发者来说,增加了负担。而如果某种应用并不需要在多个CPU上并行执行,那么软中断其实是没有必要的。因此诞生了弥补以上两个要求的tasklet。它具有以下特性:
1)一种特定类型的tasklet只能运行在一个CPU上,不能并行,只能串行执行。
2)多个不同类型的tasklet可以并行在多个CPU上。
3)软中断是静态分配的,在内核编译好之后,就不能改变。但tasklet就灵活许多,可以在运行时改变(比如添加模块时)。
tasklet是在两种软中断类型的基础上实现的,因此如果不需要软中断的并行特性,tasklet就是最好的选择。也就是说tasklet是软中断的一种特殊用法,即延迟情况下的串行执行

1.5、工作队列(wq)

? 从上面的介绍看以看出,软中断运行在中断上下文中,因此不能阻塞和睡眠,而tasklet使用软中断实现,当然也不能阻塞和睡眠。但如果某延迟处理函数需要睡眠或者阻塞呢?没关系工作队列就可以如您所愿了。
? 把推后执行的任务叫做工作(work),描述它的数据结构为work_struct ,这些工作以队列结构组织成工作队列(workqueue),其数据结构为workqueue_struct ,而工作线程就是负责执行工作队列中的工作。系统默认的工作者线程为events。
? 工作队列(work queue)是另外一种将工作推后执行的形式。工作队列可以把工作推后,交由一个内核线程去执行—这个下半部分总是会在进程上下文执行,但由于是内核线程,其不能访问用户空间。最重要特点的就是工作队列允许重新调度甚至是睡眠
? 通常,在工作队列和软中断/tasklet中作出选择非常容易。可使用以下规则:
- 如果推后执行的任务需要睡眠,那么只能选择工作队列。
- 如果推后执行的任务需要延时指定的时间再触发,那么使用工作队列,因为其可以利用timer延时(内核定时器实现)。
- 如果推后执行的任务需要在一个tick之内处理,则使用软中断或tasklet,因为其可以抢占普通进程和内核线程,同时不可睡眠。
- 如果推后执行的任务对延迟的时间没有任何要求,则使用工作队列,此时通常为无关紧要的任务。
? 实际上,工作队列的本质就是将工作交给内核线程处理,因此其可以用内核线程替换。但是内核线程的创建和销毁对编程者的要求较高,而工作队列实现了内核线程的封装,不易出错,所以我们也推荐使用工作队列。

2.TCP/IP协议栈基础

2.1 TCP/IP概念

TCP/IP传输协议,即传输控制/网络协议,也叫作网络通讯协议。它是在网络的使用中的最基本的通信协议。TCP/IP传输协议对互联网中各部分进行通信的标准和方法进行了规定。并且,TCP/IP传输协议是保证网络数据信息及时、完整传输的两个重要的协议。TCP/IP传输协议是严格来说是一个四层的体系结构,应用层、传输层、网络层和数据链路层都包含其中。 
 
TCP/IP协议是Internet最基本的协议,其中应用层的主要协议有Telnet、FTP、SMTP等,是用来接收来自传输层的数据或者按不同应用要求与方式将数据传输至传输层;传输层的主要协议有UDP、TCP,是使用者使用平台和计算机信息网内部数据结合的通道,可以实现数据传输与数据共享;网络层的主要协议有ICMP、IP、IGMP,主要负责网络中数据包的传送等;而网络访问层,也叫网路接口层或数据链路层,主要协议有ARP、RARP,主要功能是提供链路管理错误检测、对不同通信媒介有关信息细节问题进行有效处理等。 

互联网协议套件(Internet Protocol Suite,缩写IPS)是网络通信模型,以及整个网络传输协议家族,为网际网络的基础通信架构。它常通称为TCP/IP协议族,简称TCP/IP,因为该协议家族的两个核心协议:TCP(传输控制协议)和IP(网际协议),为该家族中最早通过的标准。由于在网络通讯协议普遍采用分层的结构,当多个层次的协议共同工作时,类似计算机科学中的堆栈,因此又称为TCP/IP协议栈。这些协议最早发源于美国国防部(缩写为DoD)的ARPA网项目,因此也称作DoD模型(DoD Model)。这个协议族由互联网工程任务组负责维护。

TCP/IP提供了点对点链接的机制,将资料应该如何封装、寻址、传输、路由以及在目的地如何接收,都加以标准化。它将软件通信过程抽象化为四个抽象层,采取协议堆栈的方式,分别实现出不同通信协议。协议族下的各种协议,依其功能不同,分别归属到这四个层次结构之中,常视为是简化的七层OSI模型。

2.2 TCP/IP 协议栈

TCP/IP 协议栈是一系列网络协议的总和,是构成网络通信的核心骨架,它定义了电子设备如何连入因特网,以及数据如何在它们之间进行传输。TCP/IP 协议采用4层结构,分别是应用层、传输层、网络层和链路层,每一层都呼叫它的下一层所提供的协议来完成自己的需求。由于我们大部分时间都工作在应用层,下层的事情不用我们操心;其次网络协议体系本身就很复杂庞大,入门门槛高,因此很难搞清楚TCP/IP的工作原理,通俗一点讲就是,一个主机的数据要经过哪些过程才能发送到对方的主机上。

在TCP/IP协议栈中,整个通信网络的任务,可以划分成不同的功能块,即抽象成所谓的 ” 层”。用于互联网的协议可以比照TCP/IP参考模型进行分类。TCP/IP协议栈起始于第三层协议IP(互联网协议)。所有这些协议都在相应的RFC文档中讨论及标准化。重要的协议在相应的RFC文档中均标记了状态: “必须“ (required) ,“推荐“ (recommended) ,“可选“ (elective)。其它的协议还可能有“ 试验“(experimental) 或“ 历史“(historic) 的状态。

其中必须协议最为重要,是所有TCP/IP都必须要实现的协议,包括IP和ICMP。对于一个路由器(router) 而言,有这两个协议就可以运作了,虽然从应用的角度来看,这样一个路由器 意义不大。实际的路由器一般还需要运行许多“推荐“使用的协议,以及一些其它的协议。

2.3 TCP/IP模型

技术图片

3. Socket简介

socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在socket接口后面,对用户来说,一组简单的接口就是全部,让socket去组织数据,以符合指定的协议。所以,我们无需深入理解tcp/ip协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵守tcp/udp标准的socket编程中,tcp的客户端和服务端的大致流程如下图所示:技术图片

 

常见函数及作用:

  1. int socket(int domain, int type, int protocol):创建一个新的套接字,返回套接字描述符

  2. int bind(int sockfd,struct sockaddr * my_addr,int addrlen):为套接字指明一个本地端点地址TCP/IP协议使用sockaddr_in结构,包含IP地址和端口号,服务器使用它来指明熟知的端口号,然后等待连接

  3. int listen(int sockfd,int input_queue_size):面向连接的服务器使用它将一个套接字置为被动模式,并准备接收传入连接。用于服务器,指明某个套接字连接是被动的

  4. int accept(int sockfd, struct sockaddr *addr, int *addrlen):获取传入连接请求,返回新的连接的套接字描述符

  5. int connect(int sockfd,struct sockaddr *server_addr,int sockaddr_len):同远程服务器建立主动连接,成功时返回0,若连接失败返回-1。

  6. int send(int sockfd, const void * data, int data_len, unsigned int flags):在TCP连接上发送数据,返回成功传送数据的长度,出错时返回-1

  7. int recv(int sockfd, void *buf, int buf_len,unsigned int flags):从TCP接收数据,返回实际接收的数据长度

  8. close(int sockfd):撤销套接字

 

3.1.socket()函数

int socket(int domain, int type, int protocol);

socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:

  • domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INET、AF_INET6、AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
  • type:指定socket类型。常用的socket类型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等(socket的类型有哪些?)。
  • protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。

注意:并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。

当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()、listen()时系统会自动随机分配一个端口。

3.2.bind()函数

正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

  
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

 

函数的三个参数分别为:

  • sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。
  • addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构根据地址创建socket时的地址协议族的不同而不同,如ipv4对应的是: 
    struct sockaddr_in {
        sa_family_t    sin_family; /* address family: AF_INET */
        in_port_t      sin_port;   /* port in network byte order */
        struct in_addr sin_addr;   /* internet address */
    };
    
    /* Internet address. */
    struct in_addr {
        uint32_t       s_addr;     /* address in network byte order */
    };
    ipv6对应的是: 
    struct sockaddr_in6 { 
        sa_family_t     sin6_family;   /* AF_INET6 */ 
        in_port_t       sin6_port;     /* port number */ 
        uint32_t        sin6_flowinfo; /* IPv6 flow information */ 
        struct in6_addr sin6_addr;     /* IPv6 address */ 
        uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ 
    };
    
    struct in6_addr { 
        unsigned char   s6_addr[16];   /* IPv6 address */ 
    };
    Unix域对应的是: 
    #define UNIX_PATH_MAX    108
    
    struct sockaddr_un { 
        sa_family_t sun_family;               /* AF_UNIX */ 
        char        sun_path[UNIX_PATH_MAX];  /* pathname */ 
    };
  • addrlen:对应的是地址的长度。

通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

3.3.listen()、connect()函数

如果作为一个服务器,在调用socket()、bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。

int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。

connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。

3.4.accept()函数

TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与返回客户的TCP连接。

注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

3.5.recv()、send()等函数

万事具备只欠东风,至此服务器与客户已经建立好连接了。可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上可以把上面的其它函数都替换成这两个函数。它们的声明如下:

       #include <unistd.h>
       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);    

read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。

write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。

其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。

3.6.close()函数

在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。

#include <unistd.h>
int close(int fd);

close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。

注意:close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

3.7.client源码

#include <stdio.h>     /* perror */
#include <stdlib.h>    /* exit    */
#include <sys/types.h> /* WNOHANG */
#include <sys/wait.h>  /* waitpid */
#include <string.h>    /* memset */
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netdb.h> /* gethostbyname */

#define true 1
#define false 0

#define PORT 3490       /* Server的端口 */
#define MAXDATASIZE 100 /* 一次可以读的最大字节数 */

int main(int argc, char *argv[])
{
    int sockfd, numbytes;
    char buf[MAXDATASIZE];
    struct hostent *he;            /* 主机信息 */
    struct sockaddr_in server_addr; /* 对方地址信息 */
    if (argc != 2)
    {
        fprintf(stderr, "usage: client hostname\n");
        exit(1);
    }

    /* get the host info */
    if ((he = gethostbyname(argv[1])) == NULL)
    {
        /* 注意:获取DNS信息时,显示出错需要用herror而不是perror */
        /* herror 在新的版本中会出现警告,已经建议不要使用了 */
        perror("gethostbyname");
        exit(1);
    }

    if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)
    {
        perror("socket");
        exit(1);
    }

    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(PORT); /* short, NBO */
    server_addr.sin_addr = *((struct in_addr *)he->h_addr_list[0]);
    memset(&(server_addr.sin_zero), 0, 8); /* 其余部分设成0 */

    if (connect(sockfd, (struct sockaddr *)&server_addr,
                sizeof(struct sockaddr)) == -1)
    {
        perror("connect");
        exit(1);
    }

    if ((numbytes = recv(sockfd, buf, MAXDATASIZE, 0)) == -1)
    {
        perror("recv");
        exit(1);
    }

    buf[numbytes] = \0;
    printf("Received: %s", buf);
    
    if (send(sockfd, "Hi, world!\n", 14, 0) == -1)
                perror("send");
    
    close(sockfd);

    return true;
}

3.8.server源码

#include <stdio.h>     /* perror */
#include <stdlib.h>    /* exit    */
#include <sys/types.h> /* WNOHANG */
#include <sys/wait.h>  /* waitpid */
#include <string.h>    /* memset */
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netdb.h> /* gethostbyname */

#define true 1
#define false 0

#define MYPORT 3490 /* 监听的端口 */
#define BACKLOG 10  /* listen的请求接收队列长度 */
#define MAXDATASIZE 100
int main()
{
    int sockfd, new_fd;            /* 监听端口,数据端口 */
    struct sockaddr_in sa;         /* 自身的地址信息 */
    struct sockaddr_in their_addr; /* 连接对方的地址信息 */
    unsigned int sin_size;

    if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)
    {
        perror("socket");
        exit(1);
    }

    sa.sin_family = AF_INET;
    sa.sin_port = htons(MYPORT);     /* 网络字节顺序 */
    sa.sin_addr.s_addr = INADDR_ANY; /* 自动填本机IP */
    memset(&(sa.sin_zero), 0, 8);    /* 其余部分置0 */

    if (bind(sockfd, (struct sockaddr *)&sa, sizeof(sa)) == -1)
    {
        perror("bind");
        exit(1);
    }

    if (listen(sockfd, BACKLOG) == -1)
    {
        perror("listen");
        exit(1);
    }

    /* 主循环 */
    while (1)
    {
        sin_size = sizeof(struct sockaddr_in);
        new_fd = accept(sockfd,
                        (struct sockaddr *)&their_addr, &sin_size);
        if (new_fd == -1)
        {
            perror("accept");
            continue;
        }

        printf("Got connection from %s\n",
               inet_ntoa(their_addr.sin_addr));
        if (fork() == 0)
        {
            /* 子进程 */
            if (send(new_fd, "Hello, world!\n", 14, 0) == -1)
                perror("send");
                int numbytes;
                char buf[MAXDATASIZE];
                  if ((numbytes = recv(new_fd, buf, MAXDATASIZE, 0)) == -1)
      {
        perror("recv");
        exit(1);
    }

    buf[numbytes] = \0;
    printf("Received: %s", buf);
            close(new_fd);
            exit(0);
        }

        close(new_fd);

        /*清除所有子进程 */
        while (waitpid(-1, NULL, WNOHANG) > 0);
    }
    close(sockfd);
    return true;
}

4.send函数分析过程

4.1 应用层流程

4.1.1 代码分析

/*
 *	Send a datagram down a socket.
 */

SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
		unsigned int, flags)
{
	return __sys_sendto(fd, buff, len, flags, NULL, 0);
}

当socket创建好后,用户态调用send()函数进行数据发送时,发起系统调用,send()函数在内核的系统调用服务程序为__sys_sendto()函数。

/*以下为__sys_sendto()函数的实现*/
int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
		 struct sockaddr __user *addr,  int addr_len)
{
	struct socket *sock;
	struct sockaddr_storage address;
	int err;
	struct msghdr msg;
	struct iovec iov;
	int fput_needed;

	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
	if (unlikely(err))
		return err;
	sock = sockfd_lookup_light(fd, &err, &fput_needed);
	if (!sock)
		goto out;

	msg.msg_name = NULL;
	msg.msg_control = NULL;
	msg.msg_controllen = 0;
	msg.msg_namelen = 0;
	if (addr) {
		err = move_addr_to_kernel(addr, addr_len, &address);
		if (err < 0)
			goto out_put;
		msg.msg_name = (struct sockaddr *)&address;
		msg.msg_namelen = addr_len;
	}
	if (sock->file->f_flags & O_NONBLOCK)
		flags |= MSG_DONTWAIT;
	msg.msg_flags = flags;
	err = sock_sendmsg(sock, &msg);

out_put:
	fput_light(sock->file, fput_needed);
out:
	return err;
}

这里定义了一个struct msghdr msg,他是用来表示要发送的数据的一些属性。

还有一个struct iovec,他被称为io向量,用来表示io数据的一些信息。

所以,__sys_sendto函数其实做了3件事:

1.通过fd获取了对应的struct socket

2.创建了用来描述要发送的数据的结构体struct msghdr。

3.调用了sock_sendmsg来执行实际的发送。

/*sock_sendmsg实现*/
int sock_sendmsg(struct socket *sock, struct msghdr *msg)
{
	int err = security_socket_sendmsg(sock, msg,
					  msg_data_left(msg));

	return err ?: sock_sendmsg_nosec(sock, msg);
}

正常情况下,sock_sendmsg()会调用sock_sendmsg_nosec()来进行数据发送,而sock_sendmsg_nosec()会调用inet_sendmsg()函数。

/*inet_sendmsg实现*/
static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
{
	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
				     inet_sendmsg, sock, msg,
				     msg_data_left(msg));
	BUG_ON(ret == -EIOCBQUEUED);
	return ret;
}
int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
	struct sock *sk = sock->sk;

	if (unlikely(inet_send_prepare(sk)))
		return -EAGAIN;

	return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
			       sk, msg, size);
}

继续追踪这个函数,会看到最终调用的是tcp_sendmsg()函数,即传送到传输层。

4.1.2 gdb调试验证

技术图片

4.2 传输层流程

4.2.1 代码分析

int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
	int ret;

	lock_sock(sk);
	ret = tcp_sendmsg_locked(sk, msg, size);
	release_sock(sk);

	return ret;
}

可以看到tcp_sendmsg()中调用了tcp_sendmsg_locked()函数。

int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct ubuf_info *uarg = NULL;
	struct sk_buff *skb;
	struct sockcm_cookie sockc;
	int flags, err, copied = 0;
	int mss_now = 0, size_goal, copied_syn = 0;
	int process_backlog = 0;
	bool zc = false;
	long timeo;

	flags = msg->msg_flags;
	.......................
	wait_for_memory:
		if (copied)
			tcp_push(sk, flags & ~MSG_MORE, mss_now,
				 TCP_NAGLE_PUSH, size_goal);

		err = sk_stream_wait_memory(sk, &timeo);
	

tcp_sendmsg_locked中,完成的是将所有的数据组织成发送队列,这个发送队列是struct sock结构中的一个域sk_write_queue,这个队列的每一个元素是一个skb,里面存放的就是待发送的数据。然后调用了tcp_push()函数。

struct sock{
	...
	struct sk_buff_head	sk_write_queue;/*指向skb队列的第一个元素*/
	...
	struct sk_buff	*sk_send_head;/*指向队列第一个还没有发送的元素*/
}
/*在tcp协议的头部有几个标志字段:URG、ACK、RSH、RST、SYN、FIN,tcp_push中会判断这个skb的元素是否需要push,如果需要就将tcp头部字段的push置一,置一的过程如下:*/
static void tcp_push(struct sock *sk, int flags, int mss_now,
		     int nonagle, int size_goal)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	skb = tcp_write_queue_tail(sk);
	if (!skb)
		return;
	if (!(flags & MSG_MORE) || forced_push(tp))
		tcp_mark_push(tp, skb);//对push进行标记

	tcp_mark_urg(tp, flags);

	if (tcp_should_autocork(sk, skb, size_goal)) {

		/* avoid atomic op if TSQ_THROTTLED bit is already set */
		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
		}
		/* It is possible TX completion already happened
		 * before we set TSQ_THROTTLED.
		 */
		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
			return;
	}

	if (flags & MSG_MORE)
		nonagle = TCP_NAGLE_CORK;

	__tcp_push_pending_frames(sk, mss_now, nonagle);
}

然后tcp_push调用了__tcp_push_pending_frames(sk, mss_now, nonagle)函数发送数据。

void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
			       int nonagle)
{
	/* If we are closed, the bytes will have to remain here.
	 * In time closedown will finish, we empty the write queue and
	 * all will be happy.
	 */
	if (unlikely(sk->sk_state == TCP_CLOSE))
		return;

	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
			   sk_gfp_mask(sk, GFP_ATOMIC)))
		tcp_check_probe_timer(sk);
}

然后,__tcp_push_pending_frames(sk, mss_now, nonagle)中调用tcp_write_xmit()来发送数据。在发送数据包时,如果发送失败,会检查是否需要启动零窗口探测定时器,即tcp_check_probe_timer(sk)。

static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
			   int push_one, gfp_t gfp)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;
	unsigned int tso_segs, sent_pkts;
	int cwnd_quota;
	int result;
	bool is_cwnd_limited = false, is_rwnd_limited = false;
	u32 max_segs;
	/*统计已发送的报文总数*/
	sent_pkts = 0;
	......

	/*若发送队列未满,则准备发送报文*/
	while ((skb = tcp_send_head(sk))) {
		unsigned int limit;

		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
			tcp_init_tso_segs(skb, mss_now);
			goto repair; /* Skip network transmission */
		}

		if (tcp_pacing_check(sk))
			break;

		tso_segs = tcp_init_tso_segs(skb, mss_now);
		BUG_ON(!tso_segs);
		/*检查发送窗口的大小*/
		cwnd_quota = tcp_cwnd_test(tp, skb);
		if (!cwnd_quota) {
			if (push_one == 2)
				/* Force out a loss probe pkt. */
				cwnd_quota = 1;
			else
				break;
		}

		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
			is_rwnd_limited = true;
			break;
		......
		limit = mss_now;
		if (tso_segs > 1 && !tcp_urg_mode(tp))
			limit = tcp_mss_split_point(sk, skb, mss_now,
						    min_t(unsigned int,
							  cwnd_quota,
							  max_segs),
						    nonagle);

		if (skb->len > limit &&
		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
					  skb, limit, mss_now, gfp)))
			break;

		if (tcp_small_queue_check(sk, skb, 0))
			break;

		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
			break;
	......

tcp_write_xmit()位于net/ipv4/tcp_output.c中,它实现了tcp的拥塞控制,然后调用了tcp_transmit_skb(sk, skb, 1, gfp)传输数据,实际上调用的是__tcp_transmit_skb()。

static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
{
	
	skb_push(skb, tcp_header_size);
	skb_reset_transport_header(skb);
	......
	/* 构建TCP头部和校验和 */
	th = (struct tcphdr *)skb->data;
	th->source		= inet->inet_sport;
	th->dest		= inet->inet_dport;
	th->seq			= htonl(tcb->seq);
	th->ack_seq		= htonl(rcv_nxt);

	tcp_options_write((__be32 *)(th + 1), tp, &opts);
	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
		th->window      = htons(tcp_select_window(sk));
		tcp_ecn_send(sk, skb, th, tcp_header_size);
	} else {
		/* RFC1323: The window in SYN & SYN/ACK segments
		 * is never scaled.
		 */
		th->window	= htons(min(tp->rcv_wnd, 65535U));
	}
	......
	icsk->icsk_af_ops->send_check(sk, skb);

	if (likely(tcb->tcp_flags & TCPHDR_ACK))
		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);

	if (skb->len != tcp_header_size) {
		tcp_event_data_sent(tp, sk);
		tp->data_segs_out += tcp_skb_pcount(skb);
		tp->bytes_sent += skb->len - tcp_header_size;
	}

	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
			      tcp_skb_pcount(skb));

	tp->segs_out += tcp_skb_pcount(skb);
	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);

	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */

	/* Cleanup our debris for IP stacks */
	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
			       sizeof(struct inet6_skb_parm)));

	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
	......
}

tcp_transmit_skb是tcp发送数据位于传输层的最后一步,这里首先对TCP数据段的头部进行了处理,然后调用了网络层提供的发送接口icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);实现了数据的发送,自此,数据离开了传输层,传输层的任务也就结束了。

4.2.2 gdb调试验证

技术图片

4.3 网络层流程

4.3.1 代码分析

通过传输层的分析,我们得知tcp_transmit_skb调用了网络层提供的发送接口icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);实现了数据的发送。

ip_queue_xmit是ip层提供给tcp层发送回调,大多数tcp发送都会使用这个回调,tcp层使用tcp_transmit_skb封装了tcp头之后,调用该函数。

static inline int ip_queue_xmit(struct sock *sk, struct sk_buff *skb,
				struct flowi *fl)
{
	return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
}

可以看到实际调用了__ip_queue_xmit

/* Note: skb->sk can be different from sk, in case of tunnels */
int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
{
    struct inet_sock *inet = inet_sk(sk);
    struct net *net = sock_net(sk);
    struct ip_options_rcu *inet_opt;
    struct flowi4 *fl4;
    struct rtable *rt;
    struct iphdr *iph;
    int res;

    /* Skip all of this if the packet is already routed,
     * f.e. by something like SCTP.
     */
    rcu_read_lock();
    inet_opt = rcu_dereference(inet->inet_opt);
    fl4 = &fl->u.ip4;

    /* 获取skb中的路由缓存 */
    rt = skb_rtable(skb);

    /* skb中有缓存则跳转处理 */
    if (rt)
        goto packet_routed;

    /* Make sure we can route this packet. */
    /* 检查控制块中的路由缓存 */
    rt = (struct rtable *)__sk_dst_check(sk, 0);
    /* 缓存过期 */
    if (!rt) {
        __be32 daddr;

        /* Use correct destination address if we have options. */
        /* 目的地址 */
        daddr = inet->inet_daddr;

        /* 严格路由选项 */
        if (inet_opt && inet_opt->opt.srr)
            daddr = inet_opt->opt.faddr;

        /* If this fails, retransmit mechanism of transport layer will
         * keep trying until route appears or the connection times
         * itself out.
         */
        /* 查找路由缓存 */
        rt = ip_route_output_ports(net, fl4, sk,
                       daddr, inet->inet_saddr,
                       inet->inet_dport,
                       inet->inet_sport,
                       sk->sk_protocol,
                       RT_CONN_FLAGS(sk),
                       sk->sk_bound_dev_if);
        /* 失败 */
        if (IS_ERR(rt))
            goto no_route;

        /* 设置控制块的路由缓存 */
        sk_setup_caps(sk, &rt->dst);
    }

    /* 将路由设置到skb中 */
    skb_dst_set_noref(skb, &rt->dst);

packet_routed:
    /* 严格路由选项    &&使用网关,无路由 */
    if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
        goto no_route;

    /* OK, we know where to send it, allocate and build IP header. */
    /* 加入ip头 */
    skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
    skb_reset_network_header(skb);

    /* 构造ip头 */
    iph = ip_hdr(skb);
    *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
    if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
        iph->frag_off = htons(IP_DF);
    else
        iph->frag_off = 0;
    iph->ttl      = ip_select_ttl(inet, &rt->dst);
    iph->protocol = sk->sk_protocol;
    ip_copy_addrs(iph, fl4);

    /* Transport layer set skb->h.foo itself. */
    /* 构造ip选项 */
    if (inet_opt && inet_opt->opt.optlen) {
        iph->ihl += inet_opt->opt.optlen >> 2;
        ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
    }

    /* 设置id */
    ip_select_ident_segs(net, skb, sk,
                 skb_shinfo(skb)->gso_segs ?: 1);

    /* TODO : should we use skb->sk here instead of sk ? */
    /* QOS等级 */
    skb->priority = sk->sk_priority;
    skb->mark = sk->sk_mark;

    /* 输出 */
    res = ip_local_out(net, sk, skb);
    rcu_read_unlock();
    return res;

no_route:
    /* 无路由处理 */
    rcu_read_unlock();
    IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
    kfree_skb(skb);
    return -EHOSTUNREACH;
}

函数__ip_queue_xmit()提供了路由查找校验、封装ip头和ip选项的功能,封装完成之后调用ip_local_out发送数据包。

实际调用的是__ip_local_out()函数。

int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
    struct iphdr *iph = ip_hdr(skb);

    /* 设置总长度 */
    iph->tot_len = htons(skb->len);
    /* 计算校验和 */
    ip_send_check(iph);

    /* if egress device is enslaved to an L3 master device pass the
     * skb to its handler for processing
     */
    skb = l3mdev_ip_out(sk, skb);
    if (unlikely(!skb))
        return 0;

    /* 设置ip协议 */
    skb->protocol = htons(ETH_P_IP);

    /* 经过NF的LOCAL_OUT钩子点 */
    return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
               net, sk, skb, NULL, skb_dst(skb)->dev,
               dst_output);
}

该函数设置数据包的总长度和校验和,然后经过netfilter的LOCAL_OUT钩子点进行检查过滤,如果通过,则调用dst_output函数,实际上调用的是ip数据包输出函数ip_output。

int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
    struct net_device *dev = skb_dst(skb)->dev;

    IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);

    /* 设置输出设备和协议 */
    skb->dev = dev;
    skb->protocol = htons(ETH_P_IP);

    /* 经过NF的POST_ROUTING钩子点 */
    return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
                net, sk, skb, NULL, dev,
                ip_finish_output,
                !(IPCB(skb)->flags & IPSKB_REROUTED));
}

ip_output-设置输出设备和协议,然后经过POST_ROUTING钩子点,最后调用ip_finish_output,

实际调用的是__ip_finish_output()函数。

static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	unsigned int mtu;

#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
	/* Policy lookup after SNAT yielded a new policy */
	if (skb_dst(skb)->xfrm) {
		IPCB(skb)->flags |= IPSKB_REROUTED;
		return dst_output(net, sk, skb);
	}
#endif
	 /* 获取mtu */
	mtu = ip_skb_dst_mtu(sk, skb);
    /* 是gso,则调用gso输出 */
	if (skb_is_gso(skb))
		return ip_finish_output_gso(net, sk, skb, mtu);
	 /* 长度>mtu或者设置了IPSKB_FRAG_PMTU标记,则分片 */
	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);

	return ip_finish_output2(net, sk, skb);
}

__ip_finish_output()函数对skb进行分片判断,需要分片,则分片后输出,不需要分片则直接输出,调用ip_finish_output2()。

static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	struct dst_entry *dst = skb_dst(skb);
	struct rtable *rt = (struct rtable *)dst;
	struct net_device *dev = dst->dev;
	unsigned int hh_len = LL_RESERVED_SPACE(dev);
	struct neighbour *neigh;
	bool is_v6gw = false;

	if (rt->rt_type == RTN_MULTICAST) {
		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
	} else if (rt->rt_type == RTN_BROADCAST)
		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);

	/* Be paranoid, rather than too clever. */
    /* skb头部空间不能存储链路头 */
	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
		struct sk_buff *skb2;
		/* 重新分配skb */
		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
		if (!skb2) {
			kfree_skb(skb);
			return -ENOMEM;
		}
        /* 关联控制块 */
		if (skb->sk)
			skb_set_owner_w(skb2, skb->sk);
		consume_skb(skb);
		skb = skb2;/* 指向新的skb */
	}

	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
		int res = lwtunnel_xmit(skb);

		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
			return res;
	}

	rcu_read_lock_bh();
    /*通过下一跳地址寻找邻居子系统,arp协议执行开始处,之后会调用ip_neigh_gw4()函数*/
	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
	if (!IS_ERR(neigh)) {
		int res;

		sock_confirm_neigh(skb, neigh);
		/* if crossing protocols, can not use the cached header */
		res = neigh_output(neigh, skb, is_v6gw);
		rcu_read_unlock_bh();
		return res;
	}
	rcu_read_unlock_bh();

	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
			    __func__);
	kfree_skb(skb);
	return -EINVAL;
}

ip_finish_output2-对skb的头部空间进行检查,看是否能够容纳下二层头部,若空间不足,则需要重新申请skb;然后,获取邻居子系统,并通过邻居子系统neigh_output(neigh, skb)输出。

static inline int neigh_output(struct neighbour *n, struct sk_buff *skb)
{
    const struct hh_cache *hh = &n->hh;

    /* 连接状态  &&缓存的头部存在,使用缓存输出 */
    if ((n->nud_state & NUD_CONNECTED) && hh->hh_len)
        return neigh_hh_output(hh, skb);
    /* 使用邻居项的输出回调函数输出,在连接或者非连接状态下有不同的输出函数 */
    else
        return n->output(n, skb);
}

输出分为有二层头有缓存和没有两种情况,有缓存时调用neigh_hh_output进行快速输出,没有缓存时,则调用邻居子系统的输出回调函数进行慢速输出;

static inline int neigh_hh_output(const struct hh_cache *hh, struct sk_buff *skb)
{
	unsigned int hh_alen = 0;
	unsigned int seq;
	unsigned int hh_len;
	 /* 拷贝二层头到skb */
	do {
		seq = read_seqbegin(&hh->hh_lock);
		hh_len = READ_ONCE(hh->hh_len);
        /* 二层头部<DATA_MOD,直接使用该长度拷贝 */
		if (likely(hh_len <= HH_DATA_MOD)) {
			hh_alen = HH_DATA_MOD;

			/* skb_push() would proceed silently if we have room for
			 * the unaligned size but not for the aligned size:
			 * check headroom explicitly.
			 */
			if (likely(skb_headroom(skb) >= HH_DATA_MOD)) {
				/* this is inlined by gcc */
				memcpy(skb->data - HH_DATA_MOD, hh->hh_data,
				       HH_DATA_MOD);
			}
		} else {
            /* >=DATA_MOD,对齐头部,拷贝 */
			hh_alen = HH_DATA_ALIGN(hh_len);

			if (likely(skb_headroom(skb) >= hh_alen)) {
				memcpy(skb->data - hh_alen, hh->hh_data,
				       hh_alen);
			}
		}
	} while (read_seqretry(&hh->hh_lock, seq));

	if (WARN_ON_ONCE(skb_headroom(skb) < hh_alen)) {
		kfree_skb(skb);
		return NET_XMIT_DROP;
	}

	__skb_push(skb, hh_len);
    /* 发送 */
	return dev_queue_xmit(skb);
}

最后通过dev_queue_xmit()向链路层发送数据包。

4.3.2 gdb调试验证

技术图片

技术图片

4.4 数据链路层和物理层流程

4.4.1 代码分析

int dev_queue_xmit(struct sk_buff *skb)
{
	return __dev_queue_xmit(skb, NULL);
}

实际调用的是__dev_queue_xmit(),传入的参数是一个skb 数据包。

static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
{
	struct net_device *dev = skb->dev;
	struct netdev_queue *txq;
	struct Qdisc *q;
	int rc = -ENOMEM;
	bool again = false;

	skb_reset_mac_header(skb);

	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);

	/* Disable soft irqs for various locks below. Also
	 * stops preemption for RCU.
	 */
	rcu_read_lock_bh();

	skb_update_prio(skb);

	qdisc_pkt_len_init(skb);
#ifdef CONFIG_NET_CLS_ACT
	skb->tc_at_ingress = 0;
# ifdef CONFIG_NET_EGRESS
	if (static_branch_unlikely(&egress_needed_key)) {
		skb = sch_handle_egress(skb, &rc, dev);
		if (!skb)
			goto out;
	}
# endif
#endif
	/* If device/qdisc don‘t need skb->dst, release it right now while
	 * its hot in this cpu cache.
	 */
    /*这个地方看netdevcie的flag是否要去掉skb DST相关的信息,一般情况下这个flag是默认被设置的 
     *在alloc_netdev_mqs的时候,已经默认给设置了,其实个人认为这个路由信息也没有太大作用了... 
     *dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 
     */ 
	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
		skb_dst_drop(skb);
	else
		skb_dst_force(skb);
	 /*此处主要是取出此netdevice的txq和txq的Qdisc,Qdisc主要用于进行拥塞处理,一般的情况下,直接将 
         *数据包发送给driver了,如果遇到Busy的状况,就需要进行拥塞处理了,就会用到Qdisc*/ 
	txq = netdev_core_pick_tx(dev, skb, sb_dev);
	q = rcu_dereference_bh(txq->qdisc);

	trace_net_dev_queue(skb);
     /*如果Qdisc有对应的enqueue规则,就会调用__dev_xmit_skb,进入带有拥塞的控制的Flow,注意这个地		  方,虽然是走拥塞控制的Flow但是并不一定非得进行enqueue操作啦,只有Busy的状况下,才会走Qdisc的			enqueue/dequeue操作进行 */  
	if (q->enqueue) {
		rc = __dev_xmit_skb(skb, q, dev, txq);
		goto out;
	}
     /*此处是设备没有Qdisc的,实际上没有enqueue/dequeue的规则,无法进行拥塞控制的操作, 
     *对于一些loopback/tunnel interface比较常见,判断下设备是否处于UP状态*/  
	if (dev->flags & IFF_UP) {
		int cpu = smp_processor_id(); /* ok because BHs are off */

		if (txq->xmit_lock_owner != cpu) {
			if (dev_xmit_recursion())
				goto recursion_alert;

			skb = validate_xmit_skb(skb, dev, &again);
			if (!skb)
				goto out;

			HARD_TX_LOCK(dev, txq, cpu);
			 /*这个地方判断一下txq不是stop状态,那么就直接调用dev_hard_start_xmit函数来发送数据*/ 
			if (!netif_xmit_stopped(txq)) {
				dev_xmit_recursion_inc();
				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
				dev_xmit_recursion_dec();
				if (dev_xmit_complete(rc)) {
					HARD_TX_UNLOCK(dev, txq);
					goto out;
				}
			}
			HARD_TX_UNLOCK(dev, txq);
			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
					     dev->name);
		} else {
			/* Recursion is detected! It is possible,
			 * unfortunately
			 */
recursion_alert:
			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
					     dev->name);
		}
	}

	rc = -ENETDOWN;
	rcu_read_unlock_bh();

	atomic_long_inc(&dev->tx_dropped);
	kfree_skb_list(skb);
	return rc;
out:
	rcu_read_unlock_bh();
	return rc;
}

从对_dev_queue_xmit函数的分析来看,发送报文有2中情况:

1.有拥塞控制策略的情况,比较复杂,但是目前最常用;

2.没有enqueue的状况,比较简单,直接发送到driver,如loopback等使用。

先检查是否有enqueue的规则,如果有即调用__dev_xmit_skb进入拥塞控制的flow,如果没有且txq处于On的状态,那么就调用dev_hard_start_xmit直接发送到driver。

struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
				    struct netdev_queue *txq, int *ret)
{
	struct sk_buff *skb = first;
	int rc = NETDEV_TX_OK;

	while (skb) {
		struct sk_buff *next = skb->next; /*取出skb的下一个数据单元*/

		skb_mark_not_on_list(skb);
        /*将此数据包送到driver Tx函数,因为dequeue的数据也会从这里发送,所以会有next*/
		rc = xmit_one(skb, dev, txq, next != NULL);
         /*如果发送不成功,next还原到skb->next 退出*/
		if (unlikely(!dev_xmit_complete(rc))) {
			skb->next = next;
			goto out;
		}
		 /*如果发送成功,把next置给skb,一般的next为空 这样就返回,如果不为空就继续发!*/
		skb = next;
        /*如果txq被stop,并且skb需要发送,就产生TX Busy的问题!*/
		if (netif_tx_queue_stopped(txq) && skb) {
			rc = NETDEV_TX_BUSY;
			break;
		}
	}

out:
	*ret = rc;
	return skb;
}

可以看到在dev_hard_start_xmit()中,调用xmit_one()来发送一个到多个数据包。

static int xmit_one(struct sk_buff *skb, struct net_device *dev,
		    struct netdev_queue *txq, bool more)
{
	unsigned int len;
	int rc;

	if (dev_nit_active(dev))
		dev_queue_xmit_nit(skb, dev);

	len = skb->len;
	trace_net_dev_start_xmit(skb, dev);
     /*调用netdev_start_xmit,快到driver的tx函数了*/ 
	rc = netdev_start_xmit(skb, dev, txq, more);
	trace_net_dev_xmit(skb, rc, dev, len);

	return rc;
}

xmit_one()会调用 netdev_start_xmit(),实际调用的是__netdev_start_xmit()函数,其目的就是将封包送到driver的tx函数。

4.4.2 gdb调试验证

技术图片

4.4.3 物理层中断处理过程分析

static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
					      struct sk_buff *skb, struct net_device *dev,
					      bool more)
{
	__this_cpu_write(softnet_data.xmit.more, more);
	return ops->ndo_start_xmit(skb, dev);
}

netdev_start_xmit()会调用__netdev_start_xmit(),后者会调用ndo_start_xmit(),ndo_start_xmit()绑定到具体网卡驱动的相应函数,到这步之后,就归网卡驱动管了,不同的网卡驱动有不同的处理方式,这里不做详细介绍,其大概流程如下:

  1. 将skb放入网卡自己的发送队列
  2. 通知网卡发送数据包
  3. 网卡发送完成后发送中断给CPU
  4. 收到中断后进行skb的清理工作

在网卡驱动发送数据包过程中,会有一些地方需要和netdevice子系统打交道,比如网卡的队列满了,需要告诉上层不要再发了,等队列有空闲的时候,再通知上层接着发数据。

5.recv函数执行过程分析

5.1 应用层流程

5.1.1 代码分析

/*
 *	Receive a datagram from a socket.
 */

SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
		unsigned int, flags)
{
	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
}

用户态调用的recv()函数,与前面所述的send()函数类似,真正执行的系统调用的服务程序为__sys_recvfrom()函数。

/*以下为__sys_recvfrom代码实现*/
int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
		   struct sockaddr __user *addr, int __user *addr_len)
{
	struct socket *sock;
	struct iovec iov;
	struct msghdr msg;
	struct sockaddr_storage address;
	int err, err2;
	int fput_needed;

	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
	if (unlikely(err))
		return err;
	sock = sockfd_lookup_light(fd, &err, &fput_needed);
	if (!sock)
		goto out;

	msg.msg_control = NULL;
	msg.msg_controllen = 0;
	/* Save some cycles and don‘t copy the address if not needed */
	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
	/* We assume all kernel code knows the size of sockaddr_storage */
	msg.msg_namelen = 0;
	msg.msg_iocb = NULL;
	msg.msg_flags = 0;
	if (sock->file->f_flags & O_NONBLOCK)
		flags |= MSG_DONTWAIT;
	err = sock_recvmsg(sock, &msg, flags);

	if (err >= 0 && addr != NULL) {
		err2 = move_addr_to_user(&address,
					 msg.msg_namelen, addr, addr_len);
		if (err2 < 0)
			err = err2;
	}

	fput_light(sock->file, fput_needed);
out:
	return err;
}

可以看出__sys_recvfrom()调用了sock_recvmsg()来进行数据接收。

int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
{
	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);

	return err ?: sock_recvmsg_nosec(sock, msg, flags);
}

而sock_recvmsg()中调用了sock_recvmsg_nosec()。

static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
				     int flags)
{
	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
				  inet_recvmsg, sock, msg, msg_data_left(msg),
				  flags);
}
int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
		 int flags)
{
	struct sock *sk = sock->sk;
	int addr_len = 0;
	int err;

	if (likely(!(flags & MSG_ERRQUEUE)))
		sock_rps_record_flow(sk);

	err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
			      sk, msg, size, flags & MSG_DONTWAIT,
			      flags & ~MSG_DONTWAIT, &addr_len);
	if (err >= 0)
		msg->msg_namelen = addr_len;
	return err;
}

之后被调用的是inet_recvmsg(),最终被调用的函数是tcp_recvmsg()。

5.1.2 gdb调试验证

技术图片

5.2 传输层流程

5.2.1 代码分析

函数tcp_recvmsg()完成从接收队列中读取数据复制到用户空间的任务;函数在执行过程中会锁定控制块,避免软中断在tcp层的影响;函数会涉及从接收队列receive_queue,预处理队列prequeue和后备队列backlog中读取数据;其中从prequeue和backlog中读取的数据,还需要经过sk_backlog_rcv回调,该回调的实现为tcp_v4_do_rcv,实际上是先缓存到队列中,然后需要读取的时候,才进入协议栈处理,此时,是在进程上下文执行的,因为会设置tp->ucopy.task=current,在协议栈处理过程中,会直接将数据复制到用户空间。

int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
		int flags, int *addr_len)
{
	......
	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
	    (sk->sk_state == TCP_ESTABLISHED))
		sk_busy_loop(sk, nonblock);

	lock_sock(sk);
	.....
		if (unlikely(tp->repair)) {
		err = -EPERM;
		if (!(flags & MSG_PEEK))
			goto out;

		if (tp->repair_queue == TCP_SEND_QUEUE)
			goto recv_sndq;

		err = -EINVAL;
		if (tp->repair_queue == TCP_NO_QUEUE)
			goto out;
	......
		last = skb_peek_tail(&sk->sk_receive_queue);
		skb_queue_walk(&sk->sk_receive_queue, skb) {
			last = skb;
	......
			

这里共维护了三个队列:prequeuebacklogreceive_queue,分别为预处理队列,后备队列和接收队列,在连接建立后,若没有数据到来,接收队列为空,进程会在sk_busy_loop函数内循环等待,直到接收队列不为空。

		/* 读取数据 */
        if (!(flags & MSG_TRUNC)) {
            err = skb_copy_datagram_msg(skb, offset, msg, used);
            if (err) {
                /* Exception. Bailout! */
                if (!copied)
                    copied = -EFAULT;
                break;
            }
        }

之后调用函数数skb_copy_datagram_msg将接收到的数据拷贝到用户态,实际调用的是__skb_datagram_iter,这里同样用了struct msghdr *msg来实现。

static int __skb_datagram_iter(const struct sk_buff *skb, int offset,
			       struct iov_iter *to, int len, bool fault_short,
			       size_t (*cb)(const void *, size_t, void *,
					    struct iov_iter *), void *data)
{
	int start = skb_headlen(skb);
	int i, copy = start - offset, start_off = offset, n;
	struct sk_buff *frag_iter;

	/* 拷贝tcp头部 */ 
	if (copy > 0) {
		if (copy > len)
			copy = len;
		n = cb(skb->data + offset, copy, data, to);
		offset += n;
		if (n != copy)
			goto short_copy;
		if ((len -= copy) == 0)
			return 0;
	}

	/* 拷贝数据部分 */
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		int end;
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		WARN_ON(start > offset + len);

		end = start + skb_frag_size(frag);
		if ((copy = end - offset) > 0) {
			struct page *page = skb_frag_page(frag);
			u8 *vaddr = kmap(page);

			if (copy > len)
				copy = len;
			n = cb(vaddr + skb_frag_off(frag) + offset - start,
			       copy, data, to);
			kunmap(page);
			offset += n;
			if (n != copy)
				goto short_copy;
			if (!(len -= copy))
				return 0;
		}
		start = end;
	}

	skb_walk_frags(skb, frag_iter) {
		int end;

		WARN_ON(start > offset + len);

		end = start + frag_iter->len;
		if ((copy = end - offset) > 0) {
			if (copy > len)
				copy = len;
			if (__skb_datagram_iter(frag_iter, offset - start,
						to, copy, fault_short, cb, data))
				goto fault;
			if ((len -= copy) == 0)
				return 0;
			offset += copy;
		}
		start = end;
	}
	if (!len)
		return 0;

	/* This is not really a user copy fault, but rather someone
	 * gave us a bogus length on the skb.  We should probably
	 * print a warning here as it may indicate a kernel bug.
	 */

fault:
	iov_iter_revert(to, offset - start_off);
	return -EFAULT;

short_copy:
	if (fault_short || iov_iter_count(to))
		goto fault;

	return 0;
}

当完成数据拷贝后,进行判断和进一步处理。

 /* 已经读取了数据 */
        if (copied) {
            /* 有错误或者关闭或者有信号,跳出 */
            if (sk->sk_err ||
                sk->sk_state == TCP_CLOSE ||
                (sk->sk_shutdown & RCV_SHUTDOWN) ||
                !timeo ||
                signal_pending(current))
                break;
        } else {
            /* 会话终结*/
            if (sock_flag(sk, SOCK_DONE))
                break;

            /* 有错误 */
            if (sk->sk_err) {
                copied = sock_error(sk);
                break;
            }

            /* 关闭接收端 */
            if (sk->sk_shutdown & RCV_SHUTDOWN)
                break;

            /* 连接关闭 */
            if (sk->sk_state == TCP_CLOSE) {
                /* 不在done状态,可能再读一个连接未建立起来的连接 */
                if (!sock_flag(sk, SOCK_DONE)) {
                    /* This occurs when user tries to read
                     * from never connected socket.
                     */
                    copied = -ENOTCONN;
                    break;
                }
                break;
            }

            /* 不阻塞等待 */
            if (!timeo) {
                copied = -EAGAIN;
                break;
            }

            /* 有信号待处理 */
            if (signal_pending(current)) {
                copied = sock_intr_errno(timeo);
                break;
            }
        }
if (copied >= target) {
			/* Do not sleep, just process backlog. */
			release_sock(sk);
			lock_sock(sk);
		} else {
			sk_wait_data(sk, &timeo, last);
		}

如果目标数据读取完,则处理后备队列。但是如果没有设置nonblock,同时也没有出现copied >= target的情况,也就是没有读到足够多的数据,则调用sk_wait_data将当前进程等待。也就是我们希望的阻塞方式。阻塞函数sk_wait_data所做的事情就是让出CPU,等数据来了或者设定超时之后再恢复运行。

以上我们分析的是tcp_recvmsg如何从队列中进行数据读取,接下来我们分析从IP层如何把接收到的数据放入相应队列中。

tcp_v4_rcv函数为TCP的总入口,数据包从IP层传递上来,进入该函数;其协议操作函数结构如下所示,其中handler即为IP层向TCP传递数据包的回调函数,设置为tcp_v4_rcv。

1 static struct net_protocol tcp_protocol = {
2     .early_demux    =    tcp_v4_early_demux,
3     .early_demux_handler =  tcp_v4_early_demux,
4     .handler    =    tcp_v4_rcv,
5     .err_handler    =    tcp_v4_err,
6     .no_policy    =    1,
7     .netns_ok    =    1,
8     .icmp_strict_tag_validation = 1,
9 };

而tcp_v4_rcv()函数是在IP层接收到数据后,将其回调,把数据存入相应队列。

首先调用的函数是ip_local_deliver(),

/*
 * 	Deliver IP Packets to the higher protocol layers.
 */
int ip_local_deliver(struct sk_buff *skb)
{
	/*
	 *	Reassemble IP fragments.
	 */
	struct net *net = dev_net(skb->dev);

	if (ip_is_fragment(ip_hdr(skb))) {
		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
			return 0;
	}

	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
		       net, NULL, skb, skb->dev, NULL,
		       ip_local_deliver_finish);
}

之后ip_local_deliver()调用ip_local_deliver_finish(),

static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	__skb_pull(skb, skb_network_header_len(skb));

	rcu_read_lock();
	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
	rcu_read_unlock();

	return 0;
}

ip_local_deliver_finish()调用ip_protocol_deliver_rcu(),其中就使用了回调函数tcp_v4_rcv()。

void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
{
	const struct net_protocol *ipprot;
	int raw, ret;

.........................
		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
				      skb);
		if (ret < 0) {
			protocol = -ret;
			goto resubmit;
		}
		
........................

以下为tcp_v4_rcv()的代码实现:

int tcp_v4_rcv(struct sk_buff *skb)
{
	struct net *net = dev_net(skb->dev);
	struct sk_buff *skb_to_free;
	int sdif = inet_sdif(skb);
	const struct iphdr *iph;
	const struct tcphdr *th;
	bool refcounted;
	struct sock *sk;
	int ret;
.....................

	if (sk->sk_state == TCP_LISTEN) {
		ret = tcp_v4_do_rcv(sk, skb);
		goto put_and_return;
	}
......................
}

tcp_v4_rcv()函数只要做以下几个工作:(1) 设置TCP_CB (2) 查找控制块 (3)根据控制块状态做不同处理,包括TCP_TIME_WAIT状态处理,TCP_NEW_SYN_RECV状态处理,TCP_LISTEN状态处理 (4) 接收TCP段;

tcp_v4_rcv判断状态为listen时会直接调用tcp_v4_do_rcv;如果是其他状态,将TCP包投递到目的套接字进行接收处理。如果套接字未被上锁则调用tcp_v4_do_rcv。当套接字正被用户锁定,TCP包将暂时排入该套接字的后备队列(sk_add_backlog)。

int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
	struct sock *rsk;

	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
		struct dst_entry *dst = sk->sk_rx_dst;

		sock_rps_save_rxhash(sk, skb);
		sk_mark_napi_id(sk, skb);
		if (dst) {
			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
			    !dst->ops->check(dst, 0)) {
				dst_release(dst);
				sk->sk_rx_dst = NULL;
			}
		}
		tcp_rcv_established(sk, skb);
		return 0;
	}

tcp_v4_do_ecv()检查状态如果是established,就调用tcp_rcv_established函数。

void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
{
	const struct tcphdr *th = (const struct tcphdr *)skb->data;
	struct tcp_sock *tp = tcp_sk(sk);
	unsigned int len = skb->len;

	/* TCP congestion window tracking */
	trace_tcp_probe(sk, skb);

	tcp_mstamp_refresh(tp);
	............
	/* Check timestamp */
		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
			/* No? Slow path! */
			if (!tcp_parse_aligned_timestamp(tp, th))
				goto slow_path;

			/* If PAWS failed, check it more carefully in slow path */
			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
				goto slow_path;
     ............

tcp_rcv_established()用于处理已连接状态下的输入,处理过程根据首部预测字段分为快速路径和慢速路径。

if (len <= tcp_header_len) {
			/* Bulk data transfer: sender */
			if (len == tcp_header_len) {
				/* Predicted packet is in window by definition.
				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
				 * Hence, check seq<=rcv_wup reduces to:
				 */
				if (tcp_header_len ==
				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
				    tp->rcv_nxt == tp->rcv_wup)
					tcp_store_ts_recent(tp);

				/* We know that such packets are checksummed
				 * on entry.
				 */
				tcp_ack(sk, skb, 0);
				__kfree_skb(skb);
				tcp_data_snd_check(sk);
				/* When receiving pure ack in fast path, update
				 * last ts ecr directly instead of calling
				 * tcp_rcv_rtt_measure_ts()
				 */
				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
				return;
			} else { /* Header too small */
				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
				goto discard;
			}
		} else {
			int eaten = 0;
			bool fragstolen = false;

			if (tcp_checksum_complete(skb))
				goto csum_error;

			if ((int)skb->truesize > sk->sk_forward_alloc)
				goto step5;

			/* Predicted packet is in window by definition.
			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
			 * Hence, check seq<=rcv_wup reduces to:
			 */
			if (tcp_header_len ==
			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
			    tp->rcv_nxt == tp->rcv_wup)
				tcp_store_ts_recent(tp);

			tcp_rcv_rtt_measure_ts(sk, skb);

			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);

			/* Bulk data transfer: receiver */
			__skb_pull(skb, tcp_header_len);
			eaten = tcp_queue_rcv(sk, skb, &fragstolen);

			tcp_event_data_recv(sk, skb);

			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
				/* Well, only one small jumplet in fast path... */
				tcp_ack(sk, skb, FLAG_DATA);
				tcp_data_snd_check(sk);
				if (!inet_csk_ack_scheduled(sk))
					goto no_ack;
			}
  1. 在快路中,对是有有数据负荷进行不同处理:

(1) 若无数据,则处理输入ack,释放该skb,检查是否有数据发送,有则发送;

(2) 若有数据,检查是否当前处理进程上下文,并且是期望读取的数据,若是则将数据复制到用户空间,若不满足直接复制到用户空间的情况,或者复制失败,则需要将数据段加入到接收队列中,加入方式包括合并到已有数据段,或者加入队列尾部,并唤醒用户进程通知有数据可读;

  1. 在慢路中,会进行更详细的校验,然后处理ack,处理紧急数据,接收数据段,其中数据段可能包含乱序的情况,最后进行是否有数据和ack的发送检查;

如果有数据,则使用tcp_queue_rcv()将数据加入到接收队列中。

static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
				      bool *fragstolen)
{
	int eaten;
	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);

	eaten = (tail &&
		 tcp_try_coalesce(sk, tail,
				  skb, fragstolen)) ? 1 : 0;
	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
	if (!eaten) {
		__skb_queue_tail(&sk->sk_receive_queue, skb);
		skb_set_owner_r(skb, sk);
	}
	return eaten;
}

tcp_queue_rcv用于将接收到的skb加入到接收队列receive_queue中,首先会调用tcp_try_coalesce进行分段合并到队列中最后一个skb的尝试,若失败则调用__skb_queue_tail添加该skb到队列尾部。

之后会调用tcp_data_queue(),并且调用tcp_data_ready()。

static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	bool fragstolen;
	int eaten;
.........................
		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
			tcp_ofo_queue(sk);

			/* RFC5681. 4.2. SHOULD send immediate ACK, when
			 * gap in queue is filled.
			 */
			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
		}

		if (tp->rx_opt.num_sacks)
			tcp_sack_remove(tp);

		tcp_fast_path_check(sk);

		if (eaten > 0)
			kfree_skb_partial(skb, fragstolen);
		if (!sock_flag(sk, SOCK_DEAD))
			tcp_data_ready(sk);
		return;
............................

}
void tcp_data_ready(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	int avail = tp->rcv_nxt - tp->copied_seq;

	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
		return;

	sk->sk_data_ready(sk);
}

tcp_data_ready()会调用sk_data_ready(),提醒当前sock有数据可读事件。

5.2.2 gdb调试验证

首先是ip层将数据传入队列;

技术图片

技术图片

然后是tcp_recvmsg()从队列中读取数据。

技术图片

5.3 网络层流程

技术图片

由调用栈可知,ip_rcv()是网络层接收数据的入口函数。

5.3.1 代码分析

/*
 * IP receive entry point
 */
int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
	   struct net_device *orig_dev)
{
	struct net *net = dev_net(dev);

	skb = ip_rcv_core(skb, net);
	if (skb == NULL)
		return NET_RX_DROP;

	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
		       net, NULL, skb, dev, NULL,
		       ip_rcv_finish);
}

ip_rcv()调用已经注册的 PRE_ROUTING netfilter hook ,最终调用ip_rcv_finish()函数。

static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	struct net_device *dev = skb->dev;
	int ret;

	/* if ingress device is enslaved to an L3 master device pass the
	 * skb to its handler for processing
	 */
	skb = l3mdev_ip_rcv(skb);
	if (!skb)
		return NET_RX_SUCCESS;

	ret = ip_rcv_finish_core(net, sk, skb, dev);
	if (ret != NET_RX_DROP)
		ret = dst_input(skb);
	return ret;
}

ip_rcv()可以看成是查找路由前的IP层处理,接下来的ip_rcv_finish()会查找路由表,两者间通过调用插入的netfilter来产生关联。ip_rcv_finish()主要工作是完成路由表的查询,决定报文经过IP层处理后,是继续向上传递,还是进行转发,还是丢弃。

对于没有被丢弃的报文,那么报文最终会被dst_input(skb)处理。对于应该本地传递的报文,input指针会指向ip_local_deliver。对于该转发的报文,input会指向ip_forward。

对于ip_local_deliver()的执行过程,可见[4.2.1代码分析](####4.2.1 代码分析),此处不再赘述。

5.3.2 gdb调试验证

技术图片

5.4 数据链路层和物理层流程

5.4.1 代码分析

网卡需要有驱动才能工作,驱动是加载到内核中的模块,负责衔接网卡和内核的网络模块,驱动在加载的时候将自己注册进网络模块,当相应的网卡收到数据包时,网络模块会调用相应的驱动程序处理数据。

主要过程如下:

1: 数据包从外面的网络进入物理网卡。如果目的地址不是该网卡,且该网卡没有开启混杂模式,该包会被网卡丢弃。

2: 网卡将数据包通过或DMA的方式写入到指定的内存地址,该地址由网卡驱动分配并初始化。注: 老的网卡可能不支持DMA,不过新的网卡一般都支持,具体多少划给DMA使用,不同的计算机体系有所不同,很多体系全部内存都可用。

3: 网卡通过硬件中断(IRQ)通知CPU,告诉它有数据来了。

4: CPU根据中断表,调用已经注册的中断函数,这个中断函数会调到驱动程序(NIC Driver)中相应的函数。

5: 驱动先禁用网卡的中断,表示驱动程序已经知道内存中有数据了,告诉网卡下次再收到数据包直接写内存就可以了,不要再通知CPU了,这样可以提高效率,避免CPU不停的被中断。

6: 启动软中断。这步结束后,硬件中断处理函数就结束返回了。由于硬中断处理程序执行的过程中不能被中断,所以如果它执行时间过长,会导致CPU没法响应其它硬件的中断,于是内核引入软中断,这样可以将硬中断处理函数中耗时的部分移到软中断处理函数里面来慢慢处理。

7: 内核中的ksoftirqd进程专门负责软中断的处理,当它收到软中断后,就会调用相应软中断所对应的处理函数,对于上面第6步中是网卡驱动模块抛出的软中断,ksoftirqd会调用网络模块的net_rx_action函数。

static __latent_entropy void net_rx_action(struct softirq_action *h)
{
	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
	unsigned long time_limit = jiffies +
		usecs_to_jiffies(netdev_budget_usecs);
	int budget = netdev_budget;
	LIST_HEAD(list);
	LIST_HEAD(repoll);

	local_irq_disable();
	list_splice_init(&sd->poll_list, &list);
	local_irq_enable();

	for (;;) {
		struct napi_struct *n;

		if (list_empty(&list)) {
			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
				goto out;
			break;
		}

		n = list_first_entry(&list, struct napi_struct, poll_list);
		budget -= napi_poll(n, &repoll);

		/* If softirq window is exhausted then punt.
		 * Allow this to run for 2 jiffies since which will allow
		 * an average latency of 1.5/HZ.
		 */
		if (unlikely(budget <= 0 ||
			     time_after_eq(jiffies, time_limit))) {
			sd->time_squeeze++;
			break;
		}
	}

	local_irq_disable();

	list_splice_tail_init(&sd->poll_list, &list);
	list_splice_tail(&repoll, &list);
	list_splice(&list, &sd->poll_list);
	if (!list_empty(&sd->poll_list))
		__raise_softirq_irqoff(NET_RX_SOFTIRQ);

	net_rps_action_and_irq_enable(sd);
out:
	__kfree_skb_flush();
}

在调用net_rx_action函数执行软中断NET_RX_SOFTIRQ时会遍历poll_list链表,然后调用每个设备的poll()函数将数据帧存放在socket buffers中并通知上层协议栈。

napi_gro_receive函数是驱动通过poll注册,内核调用的函数。通过这函数的的调用,skb将会传给协议栈的入口函数__netif_receive_skb

gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
{
	gro_result_t ret;

	skb_mark_napi_id(skb, napi);
	trace_napi_gro_receive_entry(skb);

	skb_gro_reset_offset(skb);

	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
	trace_napi_gro_receive_exit(ret);

	return ret;
}
static int __netif_receive_skb(struct sk_buff *skb)
{
	int ret;

	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
		unsigned int noreclaim_flag;
		noreclaim_flag = memalloc_noreclaim_save();
		ret = __netif_receive_skb_one_core(skb, true);
		memalloc_noreclaim_restore(noreclaim_flag);
	} else
		ret = __netif_receive_skb_one_core(skb, false);

	return ret;
}
//被前一函数调用
static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
{
	struct net_device *orig_dev = skb->dev;
	struct packet_type *pt_prev = NULL;
	int ret;

	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
	if (pt_prev)
		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
					 skb->dev, pt_prev, orig_dev);
	return ret;
}

当执行函数__netif_receive_skb_one_core()时,会调用ip_rcv(),将数据包交付给网络层进行处理。

5.4.2 gdb调试验证

技术图片

5.4.3 物理层中断处理过程分析

内核和网络设备驱动是通过中断的方式来处理的。当设备上有数据到达的时候,会给CPU的相关引脚上触发一个电压变化,以通知CPU来处理数据。对于网络模块来说,由于处理过程比较复杂和耗时,如果在中断函数中完成所有的处理,将会导致中断处理函数(优先级过高)将过度占据CPU,将导致CPU无法响应其它设备,例如鼠标和键盘的消息。因此Linux中断处理函数是分上半部和下半部的。上半部是只进行最简单的工作,快速处理然后释放CPU,接着CPU就可以允许其它中断进来。剩下将绝大部分的工作都放到下半部中,可以慢慢从容处理。2.4以后的内核版本采用的下半部实现方式是软中断,由ksoftirqd内核线程全权处理。和硬中断不同的是,硬中断是通过给CPU物理引脚施加电压变化,而软中断是通过给内存中的一个变量的二进制值以通知软中断处理程序。

首先是上半部分的 硬中断 处理过程。

技术图片

首先当数据帧从网线到达网卡上的时候,第一站是网卡的接收队列。网卡在分配给自己的RingBuffer中寻找可用的内存位置,找到后DMA引擎会把数据DMA到网卡之前关联的内存里,这个时候CPU都是无感的。当DMA操作完成以后,网卡会像CPU发起一个硬中断,通知CPU有数据到达。

然后是下半部分的 软中断 处理过程。

技术图片

Linux的软中断都是在专门的内核线程(ksoftirqd)中进行的,因此我们非常有必要看一下这些进程是怎么初始化的,这样我们才能在后面更准确地了解收包过程。该进程数量不是1个,而是N个,其中N等于你的机器的核数。

ksoftirqd的创建过程如下:

技术图片

当ksoftirqd被创建出来以后,它就会进入自己的线程循环函数ksoftirqd_should_run和run_ksoftirqd了。不停地判断有没有软中断需要被处理。这里需要注意的一点是,软中断不仅仅只有网络软中断,还有其它类型。

那么,当ksoftirqd收到一个软中断请求的时候,它是如何来寻找对应的中断处理函数,直到调用到net_rx_action?

首先我们需要从网络子系统的初始化开始分析。

技术图片

linux内核通过调用subsys_initcall来初始化各个子系统,在源代码目录里你可以grep出许多对这个函数的调用。这里我们要说的是网络子系统的初始化,会执行到net_dev_init函数。

static int __init net_dev_init(void)
{
	int i, rc = -ENOMEM;

	BUG_ON(!dev_boot_phase);

	if (dev_proc_init())
		goto out;

	if (netdev_kobject_init())
		goto out;

	INIT_LIST_HEAD(&ptype_all);
	for (i = 0; i < PTYPE_HASH_SIZE; i++)
		INIT_LIST_HEAD(&ptype_base[i]);

	INIT_LIST_HEAD(&offload_base);

	if (register_pernet_subsys(&netdev_net_ops))
		goto out;

	/*
	 *	Initialise the packet receive queues.
	 */

	for_each_possible_cpu(i) {
		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
		struct softnet_data *sd = &per_cpu(softnet_data, i);

		INIT_WORK(flush, flush_backlog);

		skb_queue_head_init(&sd->input_pkt_queue);
		skb_queue_head_init(&sd->process_queue);
#ifdef CONFIG_XFRM_OFFLOAD
		skb_queue_head_init(&sd->xfrm_backlog);
#endif
		INIT_LIST_HEAD(&sd->poll_list);
		sd->output_queue_tailp = &sd->output_queue;
#ifdef CONFIG_RPS
		sd->csd.func = rps_trigger_softirq;
		sd->csd.info = sd;
		sd->cpu = i;
#endif

		init_gro_hash(&sd->backlog);
		sd->backlog.poll = process_backlog;
		sd->backlog.weight = weight_p;
	}

	dev_boot_phase = 0;

	/* The loopback device is special if any other network devices
	 * is present in a network namespace the loopback device must
	 * be present. Since we now dynamically allocate and free the
	 * loopback device ensure this invariant is maintained by
	 * keeping the loopback device as the first device on the
	 * list of network devices.  Ensuring the loopback devices
	 * is the first device that appears and the last network device
	 * that disappears.
	 */
	if (register_pernet_device(&loopback_net_ops))
		goto out;

	if (register_pernet_device(&default_device_ops))
		goto out;

	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
	open_softirq(NET_RX_SOFTIRQ, net_rx_action);

	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
				       NULL, dev_cpu_dead);
	WARN_ON(rc < 0);
	rc = 0;
out:
	return rc;
}

在这个函数里,会为每个CPU都申请一个softnet_data数据结构,在这个数据结构里的poll_list是等待驱动程序将其poll函数注册进来,这一过程发生在网卡驱动初始化的时候。

open_softirq(NET_RX_SOFTIRQ, net_rx_action);

open_softirq()为每一种软中断都注册了一个处理函数。我们可以看到当软中断类型为NET_RX_SOFTIRQ时,其处理函数为net_rx_action()。

void open_softirq(int nr, void (*action)(struct softirq_action *))
{
	softirq_vec[nr].action = action;
}

继续跟踪open_softirq后发现这个注册的方式是记录在softirq_vec变量里的。后面ksoftirqd线程收到软中断的时候,也会使用这个变量来找到每一种软中断对应的处理函数。

static struct net_protocol tcp_protocol = {
	.early_demux	=	tcp_v4_early_demux,
	.early_demux_handler =  tcp_v4_early_demux,
	.handler	=	tcp_v4_rcv,
	.err_handler	=	tcp_v4_err,
	.no_policy	=	1,
	.netns_ok	=	1,
	.icmp_strict_tag_validation = 1,
};
static struct packet_type ip_packet_type __read_mostly = {
	.type = cpu_to_be16(ETH_P_IP),
	.func = ip_rcv,
	.list_func = ip_list_rcv,
};
static int __init inet_init(void)
{
...................

	if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
		pr_crit("%s: Cannot add ICMP protocol\n", __func__);
	if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
		pr_crit("%s: Cannot add UDP protocol\n", __func__);
	if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
		pr_crit("%s: Cannot add TCP protocol\n", __func__);
....................
    dev_add_pack(&ip_packet_type);
....................
}

类似的,接收数据到达上层协议层时,也是通过ip_rcv(),tcp_v4_rcv()和udp_rcv()这样的入口函数来进行处理。Linux内核中的fs_initcallsubsys_initcall类似,也是初始化模块的入口。fs_initcall调用inet_init后开始网络协议栈注册。通过inet_init,将这些函数注册到了inet_protos和ptype_base数据结构中了。如下图:

技术图片

inet_add_protocol函数将tcp和udp对应的处理函数都注册到了inet_protos数组中了。再看dev_add_pack(&ip_packet_type);这一行,ip_packet_type结构体中的type是协议名,func是ip_rcv函数,在dev_add_pack中会被注册到ptype_base哈希表中。

因此软中断中会通过ptype_base找到ip_rcv函数地址,进而将ip包正确地送到ip_rcv()中执行。在ip_rcv中将会通过inet_protos找到tcp或者udp的处理函数,再而把包转发给udp_rcv()或tcp_v4_rcv()函数。

6. 时序图

技术图片

 

 

 

TCP/IP协议栈在Linux内核中的运行时序分析

标签:toc   进程   focus   world   发送数据包   except   优先   排队   realloc   

原文地址:https://www.cnblogs.com/zxw2020/p/14350676.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!