标签:strip complete 退出 轻量 auto 运算符 程序启动 sig message
P84
只要 pod 调度到某个节点,该节点上的 Kubelet 就会运行 pod 的容器,从此只要该 pod 存在,就会保持运行。如果容器的主进程奔溃, Kubelet 就会自动重启容器;如果应用程序奔溃, Kubelet 就会自动重启应用程序。 P84
应用程序也可能因为无限循环或死锁等情况而停止响应。为确保应用在这种情况下可以重新启动,必须从外部检查应用程序的运行状况,而不是依赖于应用的内部检测。 P84
P84
Kubernetes 可以通过存活探测器 (liveness probe) 检查容器是否还在运行。可以为 pod 中的每个容器单独指定存活探测器。 Kubernetes 将定期执行探测器,如果探测失败,就会自动重启容器。 P84
注意:Kubernetes 还支持就绪探测器 (readiness probe) ,两者适用于两种不同的场景。 P84
Kubernetes 有三种探测容器的机制: P84
HTTP GET
探测器:对容器的 IP 地址(指定的端口和路径)执行 HTTP GET
请求。如果探测器收到响应,并且响应状态码不代表错误(状态码为 2xx 或 3xx ),则认为探测成功。如果服务器返回错误响应状态码或者没有响应,那么探测就被认为是失败的,容器将被重启。TCP Socket
探测器:尝试与容器指定端口建立 TCP 连接。如果连接成功建立,则探测成功。否则,容器将被重启。Exec
探测器:在容器内执行任意命令,并检查命令的退出状态码。如果状态码是 0 ,则探测成功。所有其他状态码都被认为失败,容器将被重启。P85
为了让 HTTP GET
探测器探测失败,我们需要修改 kubia 源码,使得其从第五次访问之后开始一直返回 500 状态码 (Internal Server Error) 。 P85
然后我们可以通过以下描述文件 kubia-liveness-probe.yaml
创建一个包含 HTTP GET
存活探测器的 pod 。 P85
# 遵循 v1 版本的 Kubernetes API
apiVersion: v1
# 资源类型为 Pod
kind: Pod
metadata:
# pod 的名称
name: kubia-liveness
spec:
containers:
# 创建容器所使用的镜像
- image: idealism/kubia-unhealthy
# 容器的名称
name: kubia
ports:
# 应用监听的端口
- containerPort: 8080
protocol: TCP
# 开启一个存活探测器
livenessProbe:
# 存活探测器的类型为 HTTP GET
httpGet:
# 探测器连接的网络端口
port: 8080
# 探测器请求的路径
path: /
P86
使用 kubectl create -f kubia-liveness-probe.yaml
创建完 pod 后,等待一段时间后,容器将会重启。可以通过 kubectl get pod kubia-liveness
看到容器会重启,并且无限循环下去: 86
NAME READY STATUS RESTARTS AGE
kubia-liveness 1/1 Running 2 4m9s
kubectl logs kubia-liveness --previous
: 查看前一个容器的日志,可以了解前一个容器停止的原因。 P86
kubectl describe pod kubia-liveness
: 查看 pod 详情。可以发现在 Containers 和 Events 里面有终止的相关信息。 P86
...
Containers:
kubia:
...
State: Running # 容器目前正常运行
Started: Sun, 07 Jun 2020 17:59:35 +0800
Last State: Terminated # 前一个容器由于错误被终止,错误码是 137
Reason: Error
Exit Code: 137
Started: Sun, 07 Jun 2020 17:57:44 +0800
Finished: Sun, 07 Jun 2020 17:59:27 +0800
Ready: True
Restart Count: 2 # 该容器已被重启 2 次
Liveness: http-get http://:8080/ delay=0s timeout=1s period=10s #success=1 #failure=3
...
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled <unknown> default-scheduler Successfully assigned default/kubia-liveness to minikube-m02
Warning Unhealthy 48s (x6 over 2m58s) kubelet, minikube-m02 Liveness probe failed: HTTP probe failed with statuscode: 500 # 发现容器不健康
Normal Killing 48s (x2 over 2m38s) kubelet, minikube-m02 Container kubia failed liveness probe, will be restarted # 终止该容器
...
错误码 137 是两个数字的总和: 128 + x , x 是终止进程的信号编号。 P86
SIGKILL
的信号编号,意味着这个进程被强行终止,这个信号不能被捕获或忽略,并且在接收过程中不能执行任何清理在接收到该信号SIGTERM
的信号编号,意味着这个进程被终止,先进行询问进程终止,让其清理文件和关闭,可以被捕获和解释或忽略底部列出的事件显示了 Kubernetes 发现容器不健康,所以终止并重新创建。 P86
注意:当容器被强行终止时,会创建一个全新的容器,而不是重启原来的容器。 P86
P87
可以使用 kubectl explain pod.spec.containers.livenessProbe
查看存活探测器能使用的自定义附加参数。
基于 kubia-liveness-probe.yaml
创建一个新的描述文件 kubia-liveness-probe-initial-delay.yaml
,并添加 pod.spec.containers.livenessProbe.initialDelaySeconds
属性,值为 15 ,表示在第一次探测器等待 15 秒。
...
spec:
containers:
# 创建容器所使用的镜像
- image: idealism/kubia-unhealthy
...
# 开启一个存活探测器
livenessProbe:
...
# 第一次探测前等待 15 秒
initialDelaySeconds: 15
这样可以在应用程序准备好之后再进行探测,以免应用程序启动时间过长导致一直探测失败而无限重启。
P88
/health
),并让应用从内部对内部运行的所有重要组件执行状态检查,以确保它们都没有终止或停止响应。 P88
/health
不需要认证,否则探测会一直失败,导致容器无限重启P89
P89
P89
Deployment
P89
注:本节中提到的 pod 受 Deployment
管理等说法为简化说法,实际上 pod 由受 Deployment
管理创建的 ReplicaSet
进行管理创建。
Deployment
是一种 Kubernetes 资源,可确保它的 pod 始终保持运行状态。如果 pod 因为任何原因消失(例如节点从集群中消失或由于该 pod 已从节点中逐出),则 Deployment
会注意到缺少了 pod 并创建替代者。 P89
上图的节点 1 有两个节点, Pod A 是被直接创建的,而 Pod B 由 Deployment
管理。节点异常退出后, Deployment
会创建一个新的 Pod B2 来替换减少的 Pod B ,而 Pod A 由于没有东西负责重建而完全丢失。 P89
Deployment
的操作 P90
Deployment
会持续监控正在运行的 pod 列表,并保证匹配标签选择器(03. pod: 运行于 Kubernetes 中的容器 中介绍过标签选择器及使用方式)的 pod 数目与期望相符。 P90
介绍控制器的协调流程 P91
Deployment
的工作是确保 pod 数量始终与其标签选择器匹配。 P91
了解 Deployment 的三部分 P91
Deployment
作用域中有哪些 podDeployment
的副本个数、标签选择器和 pod 模版都可以随时修改,但只有副本数目但变更会影响现有的 pod 。 P92
更改控制器的标签选择器或 pod 模版的效果 P92
更改标签选择器和 pod 模版对现有的 pod 没有影响。更改标签选择器会使现有的 pod 脱离 Deployment
的范围,因此控制器会停止关注它们。更改模版仅影响由此 Deployment
创建的新 pod 。 P92
使用 Deployment
的好处 P92
Deployment
管理的所有 pod 创建替代副本注意: pod 实例永远不会重新安置到另一个节点。 Deployment
会创建一个全新的 pod 实例,它与正在替换的实例无关。 P92
Deployment
P92
我们可以通过以下描述文件 kubia-deployment.yaml
创建一个 Deployment
,它确保符合标签选择器 app=kubia
的 pod 实例始终是三个。
# 遵循 v1 版本的 Kubernetes API
apiVersion: apps/v1
# 资源类型为 Deployment
kind: Deployment
metadata:
# Deployment 的名称
name: kubia
spec:
# 指定与标签选择器匹配的 pod 数目为 3
replicas: 3
# 指定 Deployment 操作对象
selector:
# 需要匹配以下指定的标签
matchLabels:
app: kubia
# 启动 pod 使用的模版(可以发现模版内容与 kubia-manual.yaml 对应部分一致)
template:
metadata:
# 指定标签为 app=kubia
labels:
app: kubia
spec:
containers:
# 容器的名称
- name: kubia
# 创建容器所使用的镜像
image: idealism/kubia
# 应用监听的端口
ports:
- containerPort: 8080
protocol: TCP
模版中的 pod 标签必须和 Deployment
的标签选择器匹配, API 服务器会校验 Deployment
的定义,不会接受错误配置。 P93
若不指定选择器,它会自动根据 pod 模版中的标签自动配置,这样可以让描述文件更简洁。 P93
Deployment
P94
kubectl create -f kubia-deployment.yaml
会创建一个名为 kubia 的 Deployment
,它会根据 pod 模版启动三个新 pod 。 P94
kubectl get pods
可以查看当前创建的所有 pod :
NAME READY STATUS RESTARTS AGE
kubia-9495d9bf5-5dwj7 1/1 Running 0 3m53s
kubia-9495d9bf5-5j6zr 1/1 Running 0 3m53s
kubia-9495d9bf5-w98f6 1/1 Running 0 3m53s
查看 Deployment
对已删除的 pod 的响应 P94
kubectl delete pod kubia-9495d9bf5-5dwj7
会删除一个 pod ,然后再次查看当前所有 pod ,可以发现会有 4 个 pod ,因为删除的 pod 正在终止,并且正在创建一个新的 pod : P94
NAME READY STATUS RESTARTS AGE
kubia-9495d9bf5-5dwj7 1/1 Terminating 0 24m
kubia-9495d9bf5-5j6zr 1/1 Running 0 24m
kubia-9495d9bf5-kxcw5 0/1 ContainerCreating 0 9s
kubia-9495d9bf5-w98f6 1/1 Running 0 24m
控制器如何创建新的 pod P95
控制器通过创建一个新的替代 pod 来响应 pod 的删除操作。但它并没有对删除本身作出反应,而是针对由此产生对状态—— pod 数量不足作出反应。 P95
应对节点故障 P96
接下来我们将关闭一个节点的网络接口来模拟节点故障。 P96
minikube ssh --node=‘m02‘
: 进入节点内部sudo ifconfig eth0 down
: 关闭该节点的网络接口kubectl get nodes
: 发现节点 minikube-m02
的状态为未就绪 (NotReady
)kubectl get pods
: 可能仍然会看到与之前相同的三个 pod ,因为 Kubernetes 在重新调度 pod 之前会等待一段时间(如果节点因临时网络故障或 Kubelet 重启而无法访问)。如果节点在几分钟内无法访问, Deployment
会立即启动一个新的 pod 。将 pod 移入/移出 Deployment
的作用域 P97
由 Deployment
创建的 pod 并不是绑定到 Deployment
。在任何时刻, Deployment
管理与标签选择器匹配的 pod 。通过更改 pod 的标签,可以将它从 Deployment
的作用域中添加或删除。 P97
尽管一个 pod 没有绑定到一个 Deployment
拥有的 ReplicaSet
,但该 pod 在 metadata.ownerReferences
中存储它属于哪一个 ReplicaSet
。 P98
给 Deployment
管理的 pod 加标签 P98
kubectl label pod kubia-9495d9bf5-5mmhb type=special
: 给 pod 添加其他标签不会影响 Deployment
的管理范围,它只关心该 pod 是否具有标签选择器中引用的所有标签。 P98
更改已托管的 pod 的标签 P98
kubectl label pod kubia-9495d9bf5-5mmhb app=foo --overwrite
: 更改其中一个 pod 的标签将使其不再与 Deployment
的标签选择器相匹配,并不再由 Deployment
管理,只剩下两个匹配的 pod 。因此, Deployment
会启动一个新的 pod ,将数目恢复为三。 P98
更改 Deployment
的标签选择器 P100
更改 Deployment
的标签选择器会让所有的 pod 脱离 Deployment
的管理,导致它创建三个新的 pod 。你永远不会修改控制器的标签选择器,但会时不时地更改它的 pod 模版。 P100
P100
Deployment
的 pod 模版可以随时修改,可以使用 kubectl edit deployment kubia
编辑 Deployment
。更改后会重新创建一个新的 ReplocaSet
,并使原有的 ReplocaSet
的副本数变为 0 。因此,使用 kubectl get pods
将发现有 6 个 pod ,pod 的前缀是对应的 ReplocaSet
的名称。
NAME READY STATUS RESTARTS AGE
kubia-9495d9bf5-kxcw5 1/1 Terminating 0 78m
kubia-9495d9bf5-w98f6 1/1 Terminating 0 102m
kubia-9495d9bf5-xn67d 1/1 Terminating 0 29m
kubia-bc974964b-bp4l2 1/1 Running 0 22s
kubia-bc974964b-r29j2 1/1 Running 0 39s
kubia-bc974964b-xl677 1/1 Running 0 14s
若通过 kubectl edit replicaset kubia-bc974964b
直接修改 Deployment
拥有的 ReplicaSet
实例。这样效果和直接修改 Deployment
类似,也会创建一个新的 ReplicaSet
,并使原有的 ReplocaSet
的副本数变为 0 。这样修改不会将新的 pod 模版同步回原有的 Deployment
,但删除 Deployment
时仍然会删除所有相关的 ReplocaSet
及其管理的 pod 。
P101
kubectl scale deployment kubia --replicas=10
: 可以修改 Deployment
需要保持的 pod 实例的数量(02. 开始使用 Kubernetes 和 Docker中介绍过使用该命令进行伸缩)。 P101
也可以通过 kubectl edit deployment kubia
修改 spec.replicas
的数量,从而更改需要保持的 pod 实例的数量。 P102
Deployment
当通过 kubectl delete deployment kubia
删除 Deployment
时,对应的 ReplicaSet
和 pod 都会被删除。
而通过 kubectl delete replicaset kubia-bc974964b
删除 ReplicaSet
时,对应的 pod 会被删除,但由于 Deployment
会重新创建一个 Replicaset
,所以又会自动创建对应数量的 pod 。
当通过 kubectl delete deployment kubia --cascade=false
删除 Deployment
时,会保留对应的 ReplicaSet
和 pod ,这样ReplicaSet
不再受管理,但是 pod 仍然受 ReplicaSet
管理。当重新创建符合要求的 Deployment
时, ReplicaSet
又会受到管理。
同样地,通过 kubectl delete replicaset kubia-bc974964b --cascade=false
删除 ReplicaSet
时,也会保留对应的 pod 。这样 pod 不再受管理。当创建符合要求的 ReplicaSet
时,这些 pod 又会受到管理。
ReplicaSet
P104
注:书中原本上一节讲得是 ReplicationController
,但我直接使用 Deployment
进行实践,并依照现在的结果进行了修改。目前推荐使用 Deployment
,并且 ReplicaSet
是受 Deployment
管理的,所以不再详细实践本节内容。
P106
基于 kubia-deployment.yaml
创建一个新的描述文件 kubia-deployment-matchexpressions.yaml
,并将 spec.selector.matchLabels
属性替换为 spec.selector.matchExpressions
: P107
...
spec:
...
# 指定 Deployment 操作对象
selector:
# 需要匹配满足以下要求的标签
matchExpressions:
# 标签名为 app 的值在 ["kubia"] 中
- app: app
operator: In
values:
- kubia
...
matchExpressions
运行给选择器添加额外的表达式。每个表达式都必须包含一个 key 、一个 operator ,并且可能还有一个 values 的列表(取决于 operator )。共有四个有效的运算符: P107
In
: 标签的值必须与其中一个指定的 values 匹配NotIn
: 标签的值与任何指定的 values 都不匹配Exists
: pod 必须包含一个指定名称的标签(不关心值)。使用此运算符时,不应指定 values 字段DoesNotExist
: pod 不得包含指定名称的标签。使用此运算符时,不应指定 values 字段如果指定了多个表达式,则所有这些表达式都必须为 true 才能使选择器与 pod 匹配。如果同时指定 matchLabels
和 matchExpressions
,则所有标签都必须匹配,且所有表达式都必须为 true 才能使选择器与 pod 匹配。 P107
DaemonSet
在每个节点上运行一个 pod P107
DaemonSet
可以让 pod 在集群中的每个节点上运行,并且每个节点正好有一个运行的 pod 实例。 P107
DaemonSet
在每个节点上运行一个 pod P108
DaemonSet
没有副本数的概念,它确保创建足够的 pod ,并在每一个节点上部署一个 pod 。如果节点下线, DaemonSet
不会重新创建 pod ;但新节点添加到集群中,它会立刻部署一个新的 pod 实例到该节点。 P108
DaemonSet
只在特定的节点上运行 pod P109
DaemonSet
将 pod 部署到集群的所有节点上,除非通过 pod 模版中的 spec.nodeSelector
属性指定这些 pod 只在部分节点上运行。 P109
注意:节点可以被设置为不可调度,防止 pod 被部署到节点上。但 DaemonSet
会将 pod 部署到这些节点上,因为无法调度但属性只会被调度器使用,而 DaemonSet
的目的是运行系统服务,即使在不可调度的节点上,系统服务通常也需要运行。 P109
用一个例子来解释 DaemonSet
P109
假设有一个名为 ssd-monitor
的守护进程,它需要在包含 SSD 的所有节点上运行。包含 SSD 的节点已被添加了 disk=ssd
标签,所以我们需要创建一个 DaemonSet
,它只在拥有上述标签的节点上运行守护进程。 P109
创建一个 DaemonSet
描述文件 P110
为了模拟 ssd-monitor
的监控程序,我们将使用以下 Dockerfile
创建一个每 5 秒中打印 SSD OK
的镜像。
FROM busybox
ENTRYPOINT while true; do echo ‘SSD OK‘; sleep 5; done
为了将 ssd-monitor
部署到符合要求的每个节点上,我们还需要使用以下 ssd-monitor-daemonset.yaml
描述文件进行部署。
# 遵循 apps/v1 版本的 Kubernetes API
apiVersion: apps/v1
# 资源类型为 DaemonSet
kind: DaemonSet
metadata:
# DaemonSet 的名称
name: ssd-monitor
spec:
# 指定 DaemonSet 操作对象
selector:
# 需要匹配以下指定的标签
matchLabels:
app: ssd-monitor
# 启动 pod 使用的模版
template:
metadata:
# 指定标签为 app=ssd-monitor
labels:
app: ssd-monitor
spec:
# 指定选择具有 disk=ssd 标签的节点部署
nodeSelector:
disk: ssd
containers:
# 容器的名称
- name: main
# 创建容器所使用的镜像
image: idealism/ssd-monitor
实践 P110
kubectl create -f ssd-monitor-daemonset.yaml
: 按照指定的描述文件创建一个 DaemonSet
kubectl get daemonsets
: 可以发现所有的值都是 0 ,因为目前还没有节点拥有 disk=ssd
标签kubectl get pods
: 可以发现目前还没有 podkubectl label node minikube-m03 disk=ssd
: 给节点 minikube-m03
打上标签 disk=ssd
kubectl get pods
: 可以发现刚刚启动了一个 podNAME READY STATUS RESTARTS AGE
ssd-monitor-bbqbp 0/1 ContainerCreating 0 2s
kubectl label node minikube-m03 disk=hdd --overwrite
: 将节点 minikube-m03
的标签 disk=ssd
修改为 disk=hdd
kubectl get pods
: 可以发现刚刚启动的 pod 正在终止NAME READY STATUS RESTARTS AGE
ssd-monitor-bbqbp 1/1 Terminating 0 2m37s
P112
Job
资源 P112
Kubernetes 通过 Job
资源支持运行一种 pod ,该 pod 子啊内部进程成功结束时,不重启容器。一旦任务完成, pod 就被认为处于完成状态。 P112
在节点发生故障时,该节点上由 Job
管理的 pod 将被重新安排到其他节点。如果进程本身异常退出(进程返回错误退出码时),可以将 Job
配置为重新启动容器。 P112
Job
资源 P113
为了模拟耗时的任务,我们将使用以下 Dockerfile
创建一个调用 sleep 120
命令的镜像。
FROM busybox
ENTRYPOINT echo "$(date) Batch job starting"; sleep 120; echo "$(date) Finished succesfully"
为了管理部署 batch-job
,我们还需要使用以下 batch-job.yaml
描述文件进行部署。
# 遵循 batch/v1 版本的 Kubernetes API
apiVersion: batch/v1
# 资源类型为 Job
kind: Job
metadata:
# Job 的名称
name: batch-job
spec:
# 启动 pod 使用的模版
template:
metadata:
# 指定标签为 app=batch-job
labels:
app: batch-job
spec:
# Job 不能使用 Always 为默认的重启策略
restartPolicy: OnFailure
containers:
# 容器的名称
- name: main
# 创建容器所使用的镜像
image: idealism/batch-job
设置 Job
的重启策略为 OnFailure
或 Never
可以防止容器在完成任务时重新启动。 P114
Job
运行一个 pod P114
kubectl create -f batch-job.yaml
: 根据描述文件创建指定的 Job
kubectl get jobs
: 查看 job ,可以发现刚刚创建的 Job
NAME COMPLETIONS DURATION AGE
batch-job 0/1 5s 5s
kubectl get pods
: 查看 pod ,可以发现 Job
创建的 pod 正在运行NAME READY STATUS RESTARTS AGE
batch-job-d59js 1/1 Running 0 10s
kubectl get pods
: 等两分钟后再查看 pod ,可以发现 Job
创建的 pod 状态已经变为 Completed
,即任务已经完成。 pod 未被删除,所以我们可以查看 pod 的日志NAME READY STATUS RESTARTS AGE
batch-job-d59js 0/1 Completed 0 2m56s
kubectl logs pod batch-job-d59js
: 查看 pod 的日志Sun Jun 7 22:36:04 UTC 2020 Batch job starting
Sun Jun 7 22:38:04 UTC 2020 Finished succesfully
kubectl get jobs
: 再次查看 job ,可以发现需要运行的 1 个 pod 已经完成NAME COMPLETIONS DURATION AGE
batch-job 1/1 2m45s 6m25s
Job
中运行多个 pod 实例 P114
在 Job
配置中设置 spec.completions
和 spec.parallelism
可以让 Job
创建多个 pod 实例,并允许以并行的方式运行它们。 P114
基于 batch-job.yaml
创建一个新的描述文件 multi-completion-parallel-batch-job.yaml
,并添加 spec.completions
和 spec.parallelism
属性,指定需要成功运行完成 5 个 pod ,最多 2 个 pod 并行运行 : P115
...
spec:
# 必须确保 5 个 pod 运行完成
completions: 5
# 最多 2 个 pod 可以并行运行
parallelism: 2
...
kubectl create -f multi-completion-parallel-batch-job.yaml
: 根据描述文件创建指定的 Job
kubectl get pods
: 查看运行的 pod ,可以发现共有两个 pod 正在运行。只要一个 pod 运行完成, Job
将运行下一个 pod ,直至 5 个 pod 都成功完成
NAME READY STATUS RESTARTS AGE
multi-completion-parallel-batch-job-fpwv5 1/1 Running 0 37s
multi-completion-parallel-batch-job-m4cqw 1/1 Running 0 37s
Job
pod 完成任务的时间 P116
Pod.spec.activeDeadlineSeconds
: 可以指定一个 pod 最长存活时间,超时则终止 pod 并标记 Job
失败,可以用来限制 pod 完成任务的时间Job.spec.backoffLimit
: 可以配置一个 Job
在被标记为失败前最多尝试的次数,默认为 6 次Job
定期运行或在将来运行一次 P116
CronJob
P116
为了每 15 分钟运行一次前面的任务,我们需要创建以下 cronjob.yaml
描述文件:
# 遵循 batch/v1beta1 版本的 Kubernetes API
apiVersion: batch/v1beta1
# 资源类型为 CronJob
kind: CronJob
metadata:
# Job 的名称
name: batch-job-every-fifteen-minutes
spec:
# Cron 表达式表明当前任务在每天每小时的 0, 15, 30, 45 分运行
schedule: "0,15,30,45 * * * *"
# 指定最迟必须在预定时间后 15 秒内开始运行,否则就标记为一次失败的 `Job`
startingDeadlineSeconds: 15
# 创建 Job 使用的模版(可以发现和 batch-job.yaml 的 spec 部分基本一致)
jobTemplate:
spec:
# 启动 pod 使用的模版
template:
metadata:
# 指定标签为 app=periodic-batch-job
labels:
app: periodic-batch-job
spec:
# Job 不能使用 Always 为默认的重启策略
restartPolicy: OnFailure
containers:
# 容器的名称
- name: main
# 创建容器所使用的镜像
image: idealism/batch-job
kubectl get cronjobs
: 可以查看所有的 CronJob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
batch-job-every-fifteen-minutes 0,15,30,45 * * * * False 0 <none> 8s
CronJob
总是为计划中配置的每个执行创建一个 Job
,但可能会有以下两种问题:
Job
:保证任务是幂等的Job
:保证下一个任务能运行完成错过的任何工作本文首发于公众号:满赋诸机(点击查看原文) 开源在 GitHub :reading-notes/kubernetes-in-action
Kubernetes 实战 —— 04. 副本机制和其他控制器:部署托管的 pod
标签:strip complete 退出 轻量 auto 运算符 程序启动 sig message
原文地址:https://www.cnblogs.com/manfuzhuji/p/14595936.html