标签:序列 push else factor 容器 一个队列 排除 开始 on()
考虑到现实因素,LeetCode每日一题不再每天都写题解了(甚至有可能??掉题目?……)但对于非常有意思和新奇的做法,还是会尽量记录下来
给你一个整数 n ,请你找出并返回第 n 个 丑数 。
丑数 就是只包含质因数 2、3 和/或 5 的正整数。
示例 1:
输入:n = 10
输出:12
解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。
示例 2:
输入:n = 1
输出:1
解释:1 通常被视为丑数。
提示:
1 <= n <= 1690
看到后第一眼是想要打表……
代码略
要得到从小到大的第 n 个丑数,可以使用最小堆实现。
初始时堆为空。首先将最小的丑数 1 加入堆。
每次取出堆顶元素 x,则 x 是堆中最小的丑数,由于 2x, 3x, 5x也是丑数,因此将 2x, 3x, 5x 加入堆。
上述做法会导致堆中出现重复元素的情况。为了避免重复元素,可以使用哈希集合去重,避免相同元素多次加入堆。
在排除重复元素的情况下,第 n 次从最小堆中取出的元素即为第 n 个丑数。
class Solution {
public:
int nthUglyNumber(int n) {
vector<int> factors = {2, 3, 5};
unordered_set<long> seen;
priority_queue<long, vector<long>, greater<long>> heap;
seen.insert(1L);
heap.push(1L);
int ugly = 0;
for (int i = 0; i < n; i++) {
long curr = heap.top();
heap.pop();
ugly = (int)curr;
for (int factor : factors) {
long next = curr * factor;
if (!seen.count(next)) {//count()返回给定主键出现的次数,也即next出现的次数,若为0则加入到容器中
seen.insert(next);
heap.push(next);
}
}
}
return ugly;
}
};
class Solution {
public int nthUglyNumber(int n) {
// ans 用作存储已有丑数(从下标 1 开始存储,第一个丑数为 1)
int[] ans = new int[n + 1];
ans[1] = 1;
// 由于三个有序序列都是由「已有丑数」*「质因数」而来
// i2、i3 和 i5 分别代表三个有序序列当前使用到哪一位「已有丑数」下标(起始都指向 1)
for (int i2 = 1, i3 = 1, i5 = 1, idx = 2; idx <= n; idx++) {
// 由 ans[iX] * X 可得当前有序序列指向哪一位
int a = ans[i2] * 2, b = ans[i3] * 3, c = ans[i5] * 5;
// 将三个有序序列中的最小一位存入「已有丑数」序列,并将其下标后移
int min = min(a, min(b, c));
// 由于可能不同有序序列之间产生相同丑数,因此只要一样的丑数就跳过(不能使用 else if )
if (min == a) i2++;
if (min == b) i3++;
if (min == c) i5++;
ans[idx] = min;
}
return ans[n];
}
}
下面大部分内容摘自互联网
对于这个模板类priority_queue,它是STL所提供的一个非常有效的容器。
作为队列的一个延伸,优先队列包含在头文件
优先队列是一种比较重要的数据结构,它是由二项队列编写而成的,可以以O(log n) 的效率查找一个队列中的最大值或者最小值,其中是最大值还是最小值是根据创建的优先队列的性质来决定的。
优先队列有三个参数,其声明形式为:
priority_queue< type, container, function >
这三个参数,后面两个可以省略,第一个不可以。
其中:
type:数据类型;
container:实现优先队列的底层容器;
function:元素之间的比较方式;
对于container,要求必须是数组形式实现的容器,例如vector、deque,而不能使list。
在STL中,默认情况下(不加后面两个参数)是以vector为容器,以 operator< 为比较方式,所以在只使用第一个参数时,优先队列默认是一个最大堆,每次输出的堆顶元素是此时堆中的最大元素。
假设type类型为int,则:
bool empty() const
//返回值为true,说明队列为空;
int size() const
//返回优先队列中元素的数量;
void pop()
//删除队列顶部(最大或最小)的元素,也即根节点
int top()
//返回队列中的顶部(最大或最小的)元素,但不删除该元素;
void push(int arg)
//将元素arg插入到队列之中;
大顶堆
//构造一个空的优先队列(此优先队列默认为大顶堆)
priority_queue<int> big_heap;
//另一种构建大顶堆的方法
priority_queue<int,vector<int>,less<int> > big_heap2;
小顶堆
//构造一个空的优先队列,此优先队列是一个小顶堆
priority_queue<int,vector<int>,greater<int> > small_heap;
需要注意的是,如果使用less
#include <functional>
#include<iostream>
#include <queue>
using namespace std;
int main()
{
//对于基础类型 默认是大顶堆
priority_queue<int> a;
//等同于 priority_queue<int, vector<int>, less<int> > a;
// 这里一定要有空格,不然成了右移运算符↓↓
priority_queue<int, vector<int>, greater<int> > c; //这样就是小顶堆
priority_queue<string> b;
for (int i = 0; i < 5; i++)
{
a.push(i);
c.push(i);
}
while (!a.empty())
{
cout << a.top() << ‘ ‘;
a.pop();
}
cout << endl;
while (!c.empty())
{
cout << c.top() << ‘ ‘;
c.pop();
}
cout << endl;
b.push("abc");
b.push("abcd");
b.push("cbd");
while (!b.empty())
{
cout << b.top() << ‘ ‘;
b.pop();
}
cout << endl;
return 0;
}
结果:
4 3 2 1 0
0 1 2 3 4
cbd abcd abc
unordered_set 容器,可直译为“无序 set 容器”,即 unordered_set 容器和 set 容器很像,唯一的区别就在于 set 容器会自行对存储的数据进行排序,而 unordered_set 容器不会。
总的来说,unordered_set 容器具有以下几个特性:
1.不再以键值对的形式存储数据,而是直接存储数据的值;
2.容器内部存储的各个元素的值都互不相等,且不能被修改。
3.不会对内部存储的数据进行排序
对于 unordered_set 容器不以键值对的形式存储数据,读者也可以这样认为,即 unordered_set 存储的都是键和值相等的键值对,为了节省存储空间,该类容器在实际存储时选择只存储每个键值对的值。
另外,实现 unordered_set 容器的模板类定义在<unordered_set>头文件,并位于 std 命名空间中。这意味着,如果程序中需要使用该类型容器,则首先应该包含如下代码:
注意,第二行代码不是必需的,但如果不用,则程序中只要用到该容器时,必须手动注明 std 命名空间
#include <unordered_set>
using namespace std;
前面介绍了如何创建 unordered_map 和 unordered_multimap 容器,值得一提的是,创建它们的所有方式完全适用于 unordereded_set 容器。不过,考虑到一些读者可能尚未学习其它无序容器,因此这里还是讲解一下创建 unordered_set 容器的几种方法。
std::unordered_set<std::string> uset;
如果程序已经引入了 std 命名空间,这里可以省略所有的 std::。
由此,就创建好了一个可存储 string 类型值的 unordered_set 容器,该容器底层采用默认的哈希函数 hash
std::unordered_set<std::string> uset{ "http://c.biancheng.net/c/",
"http://c.biancheng.net/java/",
"http://c.biancheng.net/linux/" };
通过此方法创建的 uset 容器中,就包含有 3 个 string 类型元素。
通过此方法创建的 uset 容器中,就包含有 3 个 string 类型元素。
例如,在第二种方式创建好 uset 容器的基础上,再创建并初始化一个 uset2 容器:
std::unordered_set<std::string> uset2(uset);
由此,umap2 容器中就包含有 umap 容器中所有的元素。
除此之外,C++ 11 标准中还向 unordered_set 模板类增加了移动构造函数,即以右值引用的方式,利用临时 unordered_set 容器中存储的所有元素,给新建容器初始化。例如:
//返回临时 unordered_set 容器的函数
std::unordered_set <std::string> retuset() {
std::unordered_set<std::string> tempuset{ "http://c.biancheng.net/c/",
"http://c.biancheng.net/java/",
"http://c.biancheng.net/linux/" };
return tempuset;
}
//调用移动构造函数,创建 uset 容器
std::unordered_set<std::string> uset(retuset());
注意,无论是调用复制构造函数还是拷贝构造函数,必须保证 2 个容器的类型完全相同。
//传入 2 个迭代器,
std::unordered_set<std::string> uset2(++uset.begin(),uset.end());
通过此方式创建的 uset2 容器,其内部就包含 uset 容器中除第 1 个元素外的所有其它元素。
unordered_set 类模板中,提供了如表 所示的成员方法。
成员方法 | 功能 |
---|---|
begin() | 返回指向容器中第一个元素的正向迭代器。 |
end(); | 返回指向容器中最后一个元素之后位置的正向迭代器。 |
cbegin() | 和 begin() 功能相同,只不过其返回的是 const 类型的正向迭代器。 |
cend() | 和 end() 功能相同,只不过其返回的是 const 类型的正向迭代器。 |
empty() | 若容器为空,则返回 true;否则 false。 |
size() | 返回当前容器中存有元素的个数。 |
max_size() | 返回容器所能容纳元素的最大个数,不同的操作系统,其返回值亦不相同。 |
find(key) | 查找以值为 key 的元素,如果找到,则返回一个指向该元素的正向迭代器;反之,则返回一个指向容器中最后一个元素之后位置的迭代器(如果 end() 方法返回的迭代器)。 |
count(key) | 在容器中查找值为 key 的元素的个数。 |
equal_range(key) | 返回一个 pair 对象,其包含 2 个迭代器,用于表明当前容器中值为 key 的元素所在的范围。 |
emplace() | 向容器中添加新元素,效率比 insert() 方法高。 |
emplace_hint() | 向容器中添加新元素,效率比 insert() 方法高。 |
insert() | 向容器中添加新元素。 |
erase() | 删除指定元素。 |
clear() | 清空容器,即删除容器中存储的所有元素。 |
swap() | 交换 2 个 unordered_map 容器存储的元素,前提是必须保证这 2 个容器的类型完全相等。 |
bucket_count() | 返回当前容器底层存储元素时,使用桶(一个线性链表代表一个桶)的数量。 |
max_bucket_count() | 返回当前系统中,unordered_map 容器底层最多可以使用多少桶。 |
bucket_size(n) | 返回第 n 个桶中存储元素的数量。 |
bucket(key) | 返回值为 key 的元素所在桶的编号。 |
load_factor() | 返回 unordered_map 容器中当前的负载因子。负载因子,指的是的当前容器中存储元素的数量(size())和使用桶数(bucket_count())的比值,即 load_factor() = size() / bucket_count()。 |
max_load_factor() | 返回或者设置当前 unordered_map 容器的负载因子。 |
rehash(n) | 将当前容器底层使用桶的数量设置为 n。 |
reserve() | 将存储桶的数量(也就是 bucket_count() 方法的返回值)设置为至少容纳count个元(不超过最大负载因子)所需的数量,并重新整理容器。 |
hash_function() | 返回当前容器使用的哈希函数对象。 |
注意,此容器模板类中没有重载 [ ] 运算符,也没有提供 at() 成员方法。不仅如此,由于 unordered_set 容器内部存储的元素值不能被修改,因此无论使用哪个迭代器方法获得的迭代器,都不能用于修改容器中元素的值。
另外,对于实现互换 2 个相同类型 unordered_set 容器的所有元素,除了调用表 2 中的 swap() 成员方法外,还可以使用 STL 标准库提供的 swap() 非成员函数,它们具有相同的名称,用法也相同(都只需要传入 2 个参数即可),仅是调用方式上有差别。
下面的样例演示了表 2 中部分成员方法的用法:
#include <iostream>
#include <string>
#include <unordered_set>
using namespace std;
int main()
{
//创建一个空的unordered_set容器
std::unordered_set<std::string> uset;
//给 uset 容器添加数据
uset.emplace("http://c.biancheng.net/java/");
uset.emplace("http://c.biancheng.net/c/");
uset.emplace("http://c.biancheng.net/python/");
//查看当前 uset 容器存储元素的个数
cout << "uset size = " << uset.size() << endl;
//遍历输出 uset 容器存储的所有元素
for (auto iter = uset.begin(); iter != uset.end(); ++iter) {
cout << *iter << endl;
}
return 0;
}
程序执行结果为:
uset size = 3
http://c.biancheng.net/java/
http://c.biancheng.net/c/
http://c.biancheng.net/python/
[LeetCode]丑数 II&C++中priority_queue和unordered_set的使用
标签:序列 push else factor 容器 一个队列 排除 开始 on()
原文地址:https://www.cnblogs.com/p0lar1s/p/14644618.html