标签:char 递归遍历 nod tno 遍历 tor bool lse printf
二叉树本身是一种递归的数据类型,二叉树的许多操作离不开递归。非递归遍历包括结点入栈,先访问右子树,再访问根节点,访问左子树,先序和后序的非递归算法有待调试。
#include<stdlib.h>
#include<stdbool.h>
typedef char TElemtype;
typedef struct BiTNode
{
TElemtype Data;
struct BiTNode* Lchild, * Rchild;
}BiTNode;
typedef BiTNode* BiTree;
typedef BiTNode ElemType;
typedef struct
{
ElemType* base;
int top;
int SatckSize;
}Stack;
typedef Stack* PStack;
void PrintTree(BiTree Tree)
{
printf("%c", Tree->Data);
}
void PreOrder(BiTree Tree, void(*Visit)(BiTree))
{
if (Tree) {
Visit(Tree);
PreOrder(Tree->Lchild, Visit);
PreOrder(Tree->Rchild, Visit);
}
}
void InOrder(BiTree Tree, void(*Visit)(BiTree))
{
if (Tree)
{
InOrder(Tree->Lchild, Visit);
Visit(Tree);
InOrder(Tree->Rchild, Visit);
}
}
void PostOrder(BiTree Tree, void (*Visit)(BiTree))
{
if (Tree)
{
PostOrder(Tree, Visit);
PostOrder(Tree, Visit);
Visit(Tree);
}
}
void Array_InOrder(BiTree Tree, void(*Visit)(BiTree))
{
PStack S;
InitStack(S, 100);
BiTree p = Tree;
while (p || !IsEmpty(S))
{
if (p) {
Push(S, *p);
p = p->Lchild;
}
else {
Pop(S, p);
Visit(p);
p->Rchild;
}
}
}
}
附上栈的一些操作
void InitStack(PStack S, int size)
{
if (!S) exit(1);
if (size > 0) S->base = (ElemType*)malloc(sizeof(ElemType) * size);
if (!S->base)exit(1);
S->SatckSize = size;
S->top = 0;
}
bool Pop(PStack S, ElemType* PopItem)
{
if (S->top <= 0)
{
printf("Stack is empty\n"); return false;
}
S->top--;
*PopItem = *(S->base + S->top);
return true;
}
bool Push(PStack S, ElemType PushItem)
{
if (S->top >= S->SatckSize)
{
printf("Stack is full\n"); return false;
}
*(S->base + S->top) = PushItem;
S->top++;
return true;
}
ElemType GetTop(PStack S, ElemType* TopItem)
{
if (S->top <= 0)
{
printf("NO Item\n");
}
*TopItem = *(S->base + S->top - 1);
return *TopItem;
}
bool IsEmpty(PStack S)
{
if (S->top == 0) return true;
else return false;
}
标签:char 递归遍历 nod tno 遍历 tor bool lse printf
原文地址:https://www.cnblogs.com/tzp-empty-hya/p/14645397.html