标签:bzoj 莫队算法 曼哈顿距离最小生成树 mst
题目大意:给出一些袜子的排列顺序,每次问一段区间中有多少相同颜色的袜子对。
思路:莫队算法真是一个神奇的算法。首先,暴力枚举是O(n^2)的时间复杂度,这肯定是不行的。假如区间是保证不重合的,那么就可以将总的时间转移的复杂度降到O(n)。很遗憾,题目中没有这个保证。于是乎,神秘的莫队就发明了一种神奇的算法。
对于每一个询问,我们将它看成一个平面上的点(x1,y1),同样的也就会有其他的点分布在平面中。假如还有一个点(x2,y2),那么我们从第一个区间转移到第二个区间需要改变的元素总数为|x1 - x2| + |y1 - y2|,也就是两点之间的曼哈顿距离。所以我们把所有的询问抽象成平面上的点,然后做曼哈顿距离最小生成树,之后便利这棵树,顺便就统计出了所有的答案了。
CODE:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 50010 #define INF 0x3f3f3f3f using namespace std; struct Edge{ int x,y,length; Edge(int _,int __,int ___):x(_),y(__),length(___) {} Edge() {} bool operator <(const Edge &a)const { return length < a.length; } }edge[MAX << 3]; struct Point{ int x,y,_id; bool operator <(const Point &a)const { if(x == a.x) return y < a.y; return x < a.x; } void Read() { scanf("%d%d",&x,&y); } }point[MAX]; struct Ask{ int x,y; }ask[MAX]; int t,points,edges; int src[MAX]; pair<int,int *> xx[MAX]; int y_x[MAX]; int fenwick[MAX]; int father[MAX]; int head[MAX],total; int _next[MAX << 1],aim[MAX << 1]; unsigned int cnt[MAX],now; unsigned int ans[MAX],down[MAX]; inline void Add(int x,int y) { _next[++total] = head[x]; aim[total] = y; head[x] = total; } inline int CalcM(const Point &a,const Point &b) { return abs(a.x - b.x) + abs(a.y - b.y); } inline int GetPos(int x) { int re = 0; for(; x <= points; x += x&-x) if(point[fenwick[x]].x + point[fenwick[x]].y < point[re].x + point[re].y) re = fenwick[x]; return re; } inline void Fix(int x,int pos) { for(; x; x -= x&-x) if(point[fenwick[x]].x + point[fenwick[x]].y > point[pos].x + point[pos].y) fenwick[x] = pos; } void MakeGraph() { for(int dir = 1; dir <= 4; ++dir) { if(dir != 1) for(int i = 1; i <= points; ++i) point[i].y *= -1; if(dir == 3) for(int i = 1; i <= points; ++i) swap(point[i].x,point[i].y); memset(fenwick,0,sizeof(fenwick)); for(int i = 1; i <= points; ++i) { xx[i].first = point[i].y - point[i].x; xx[i].second = &y_x[i]; } sort(xx + 1,xx + points + 1); int t = 0; xx[0].first = INF; for(int i = 1;i <= points; ++i) { if(xx[i].first != xx[i - 1].first) ++t; *xx[i].second = t; } sort(point + 1,point + points + 1); for(int i = points; i; --i) { int temp = GetPos(y_x[i]); if(temp) edge[++edges] = Edge(point[i]._id,point[temp]._id,CalcM(point[i],point[temp])); Fix(y_x[i],i); } } } int Find(int x) { if(father[x] == x) return x; return father[x] = Find(father[x]); } void MST() { sort(edge + 1,edge + edges + 1); for(int i = 1; i <= edges; ++i) { int fx = Find(edge[i].x); int fy = Find(edge[i].y); if(fx != fy) { father[fx] = fy; Add(edge[i].x,edge[i].y); Add(edge[i].y,edge[i].x); } } } void DFS(int x,int last) { static int l = 1,r = 0; while(r < ask[x].y) now += cnt[src[++r]]++; while(l > ask[x].x) now += cnt[src[--l]]++; while(r > ask[x].y) now -= --cnt[src[r--]]; while(l < ask[x].x) now -= --cnt[src[l++]]; down[x] = (unsigned int)(r - l + 1) * (r - l) >> 1; ans[x] = now; for(int i = head[x]; i; i = _next[i]) { if(aim[i] == last) continue; DFS(aim[i],x); while(r < ask[x].y) now += cnt[src[++r]]++; while(l > ask[x].x) now += cnt[src[--l]]++; while(r > ask[x].y) now -= --cnt[src[r--]]; while(l < ask[x].x) now -= --cnt[src[l++]]; } } int main() { cin >> t >> points; for(int i = 1; i <= t; ++i) scanf("%d",&src[i]); point[0].x = point[0].y = INF; for(int i = 1; i <= points; ++i) { point[i].Read(); ask[i].x = point[i].x; ask[i].y = point[i].y; point[i]._id = i; father[i] = i; } MakeGraph(); MST(); DFS(1,0); for(int i = 1; i <= points; ++i) { unsigned int u = ans[i],d = down[i]; if(!u) puts("0/1"); else { unsigned int gcd = __gcd(u,d); printf("%u/%u\n",u / gcd,d / gcd); } } return 0; }
BZOJ 2038 2009国家集训队 小Z的袜子 莫队算法
标签:bzoj 莫队算法 曼哈顿距离最小生成树 mst
原文地址:http://blog.csdn.net/jiangyuze831/article/details/41080105