标签:oat start 最短路径算法 __name__ com site join process ESS
最小权重路径
"""
需要三个字段:流程图(各个节点),权重图(启点到各个节点),父节点(各个节点),是否处理过的一个数组
"""
graph = {}
graph[‘start‘] = {}
graph[‘start‘][‘a‘] = 6
graph[‘start‘][‘b‘] = 2
graph[‘b‘] = {}
graph[‘b‘][‘a‘] = 3
graph[‘b‘][‘end‘] = 5
graph[‘a‘] = {}
graph[‘a‘][‘end‘] = 1
graph[‘end‘] = {}
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["end"] = infinity
parents = {}
parents[‘a‘] = "start"
parents[‘b‘] = "start"
parents[‘end‘] = None
processed = []
class DiKeSiTeLa():
def find_lowest_cost_node(self, costs):
"""
找到开销最小的节点
"""
lowest_cost = float(‘inf‘)
lowest_cost_node = None
for node in costs:
cost = costs[node]
if cost < lowest_cost and node not in processed:
lowest_cost_node = node
lowest_cost = cost
return lowest_cost_node
if __name__ == "__main__":
di = DiKeSiTeLa()
node = di.find_lowest_cost_node(costs)
while node is not None:
cost = costs[node]
nighbors = graph[node]
for n in nighbors.keys():
new_cost = cost + nighbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = di.find_lowest_cost_node(costs)
print(costs)
print(parents)
# {‘a‘: 5, ‘b‘: 2, ‘end‘: 6}
# {‘a‘: ‘b‘, ‘b‘: ‘start‘, ‘end‘: ‘a‘}
示例2
graph = {
‘start‘: {
‘a‘: 5,
‘b‘: 2
},
‘a‘: {
‘c‘: 4,
‘d‘: 2
},
‘b‘: {
‘a‘: 8,
‘d‘: 7
},
‘c‘: {
‘end‘: 3,
‘d‘: 6
},
‘d‘: {
‘end‘: 1
},
‘end‘: {}
}
# 权重
inf = float(‘inf‘)
costs = {}
costs[‘a‘] = 5
costs[‘b‘] = 2
costs.update({
‘c‘: inf,
‘d‘: inf,
‘end‘: inf
})
# 父节点
parents = {
‘a‘: ‘start‘,
‘b‘: ‘start‘,
‘c‘: None,
‘d‘: None,
‘end‘: None
}
# 已处理的节点
processed = []
def find_lowest_cost_node(costs):
lowest_node = None
lowest_node_cost = float(‘inf‘)
for node in costs:
if costs[node] < lowest_node_cost and node not in processed:
lowest_node_cost = costs[node]
lowest_node = node
return lowest_node
def shortest_way(parents):
way = []
next = ‘end‘
while next != ‘start‘:
way.append(next)
next = parents.get(next)
return ‘ --> ‘.join([‘start‘]+way[::-1])
if __name__ == ‘__main__‘:
node = find_lowest_cost_node(costs)
while node:
nighbors = graph[node]
for n in nighbors.keys():
new_cost = costs[node] + nighbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = find_lowest_cost_node(costs)
print(costs) # {‘a‘: 5, ‘b‘: 2, ‘c‘: 9, ‘d‘: 7, ‘end‘: 8}
print(parents) # {‘a‘: ‘start‘, ‘b‘: ‘start‘, ‘c‘: ‘a‘, ‘d‘: ‘a‘, ‘end‘: ‘d‘}
print(shortest_way(parents)) # start --> a --> d --> end
示例3
from 迪克斯特拉算法2_A import shortest_way
grahp = {
‘start‘: {
‘a‘: 10
},
‘a‘: {
‘c‘: 20
},
‘c‘: {
‘end‘: 30,
‘b‘: 1
},
‘b‘: {
‘a‘: 1
},
‘end‘: {}
}
inf = float(‘inf‘)
costs = {
‘a‘: 10,
‘b‘: inf,
‘c‘: inf,
‘end‘: inf
}
parents = {
‘a‘: ‘start‘,
‘b‘: ‘c‘,
‘c‘: ‘a‘,
‘end‘: ‘c‘
}
processed = []
def find_lowest_cost_node(costs):
lowest_node = None
lowest_node_cost = inf
for node in costs:
if lowest_node_cost > costs[node] and node not in processed:
lowest_node = node
lowest_node_cost = costs[node]
return lowest_node
if __name__ == "__main__":
node = find_lowest_cost_node(costs=costs)
while node:
highbors = grahp[node]
for n in highbors.keys():
new_cost = costs[node] + highbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = find_lowest_cost_node(costs=costs)
print(costs) # {‘a‘: 10, ‘b‘: 31, ‘c‘: 30, ‘end‘: 60}
print(parents) # {‘a‘: ‘start‘, ‘b‘: ‘c‘, ‘c‘: ‘a‘, ‘end‘: ‘c‘}
print(shortest_way(parents)) # start --> a --> c --> end
示例4
from 迪克斯特拉算法2_B import shortest_way, inf
grahp = {
‘start‘: {
‘b‘: 2,
‘a‘: 2
},
‘a‘: {
‘b‘: 2
},
‘b‘: {
‘c‘: 2,
‘end‘: 2
},
‘c‘: {
‘a‘: -1,
‘end‘: 2
},
‘end‘: {}
}
costs = {
‘a‘: 2,
‘b‘: 2,
‘c‘: inf,
‘end‘: inf
}
parents = {
‘a‘: ‘start‘,
‘b‘: ‘start‘,
‘c‘: None,
‘end‘: None
}
processed = []
def find_lowest_cost_node(costs):
lowest_node = None
lowest_node_cost = inf
for node in costs:
if lowest_node_cost > costs[node] and node not in processed:
lowest_node = node
lowest_node_cost = costs[node]
return lowest_node
if __name__ == ‘__main__‘:
node = find_lowest_cost_node(costs)
while node:
nighbors = grahp[node]
for n in nighbors.keys():
new_cost = costs[node] + nighbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = find_lowest_cost_node(costs)
print(shortest_way(parents)) # start --> b --> end
标签:oat start 最短路径算法 __name__ com site join process ESS
原文地址:https://www.cnblogs.com/pywjh/p/14945404.html